Solve for x (complex solution)
x=-\frac{1}{a^{2}-1}
a\neq -1\text{ and }a\neq 1
Solve for x
x=-\frac{1}{a^{2}-1}
|a|\neq 1
Solve for a (complex solution)
a=-\sqrt{\frac{x-1}{x}}
a=\sqrt{\frac{x-1}{x}}\text{, }x\neq 0
Solve for a
a=\sqrt{\frac{x-1}{x}}
a=-\sqrt{\frac{x-1}{x}}\text{, }x\geq 1\text{ or }x<0
Graph
Share
Copied to clipboard
0=a^{2}x-1-x+2
To find the opposite of x-2, find the opposite of each term.
0=a^{2}x+1-x
Add -1 and 2 to get 1.
a^{2}x+1-x=0
Swap sides so that all variable terms are on the left hand side.
a^{2}x-x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(a^{2}-1\right)x=-1
Combine all terms containing x.
\frac{\left(a^{2}-1\right)x}{a^{2}-1}=-\frac{1}{a^{2}-1}
Divide both sides by -1+a^{2}.
x=-\frac{1}{a^{2}-1}
Dividing by -1+a^{2} undoes the multiplication by -1+a^{2}.
0=a^{2}x-1-x+2
To find the opposite of x-2, find the opposite of each term.
0=a^{2}x+1-x
Add -1 and 2 to get 1.
a^{2}x+1-x=0
Swap sides so that all variable terms are on the left hand side.
a^{2}x-x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(a^{2}-1\right)x=-1
Combine all terms containing x.
\frac{\left(a^{2}-1\right)x}{a^{2}-1}=-\frac{1}{a^{2}-1}
Divide both sides by a^{2}-1.
x=-\frac{1}{a^{2}-1}
Dividing by a^{2}-1 undoes the multiplication by a^{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}