Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+5a-40=0
Swap sides so that all variable terms are on the left hand side.
a=\frac{-5±\sqrt{5^{2}-4\left(-40\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5±\sqrt{25-4\left(-40\right)}}{2}
Square 5.
a=\frac{-5±\sqrt{25+160}}{2}
Multiply -4 times -40.
a=\frac{-5±\sqrt{185}}{2}
Add 25 to 160.
a=\frac{\sqrt{185}-5}{2}
Now solve the equation a=\frac{-5±\sqrt{185}}{2} when ± is plus. Add -5 to \sqrt{185}.
a=\frac{-\sqrt{185}-5}{2}
Now solve the equation a=\frac{-5±\sqrt{185}}{2} when ± is minus. Subtract \sqrt{185} from -5.
a=\frac{\sqrt{185}-5}{2} a=\frac{-\sqrt{185}-5}{2}
The equation is now solved.
a^{2}+5a-40=0
Swap sides so that all variable terms are on the left hand side.
a^{2}+5a=40
Add 40 to both sides. Anything plus zero gives itself.
a^{2}+5a+\left(\frac{5}{2}\right)^{2}=40+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+5a+\frac{25}{4}=40+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+5a+\frac{25}{4}=\frac{185}{4}
Add 40 to \frac{25}{4}.
\left(a+\frac{5}{2}\right)^{2}=\frac{185}{4}
Factor a^{2}+5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{5}{2}\right)^{2}}=\sqrt{\frac{185}{4}}
Take the square root of both sides of the equation.
a+\frac{5}{2}=\frac{\sqrt{185}}{2} a+\frac{5}{2}=-\frac{\sqrt{185}}{2}
Simplify.
a=\frac{\sqrt{185}-5}{2} a=\frac{-\sqrt{185}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.