Solve for b_a
b_{a}=-\frac{a}{2}+\frac{5}{a}
a\neq 0
Solve for a
a=\sqrt{b_{a}^{2}+10}-b_{a}
a=-\sqrt{b_{a}^{2}+10}-b_{a}
Quiz
Algebra
5 problems similar to:
0 = a ^ { 2 } + 4 \cdot \frac { 1 } { 2 } \cdot a \cdot b _ { a } - 10
Share
Copied to clipboard
0=a^{2}+2ab_{a}-10
Multiply 4 and \frac{1}{2} to get 2.
a^{2}+2ab_{a}-10=0
Swap sides so that all variable terms are on the left hand side.
2ab_{a}-10=-a^{2}
Subtract a^{2} from both sides. Anything subtracted from zero gives its negation.
2ab_{a}=-a^{2}+10
Add 10 to both sides.
2ab_{a}=10-a^{2}
The equation is in standard form.
\frac{2ab_{a}}{2a}=\frac{10-a^{2}}{2a}
Divide both sides by 2a.
b_{a}=\frac{10-a^{2}}{2a}
Dividing by 2a undoes the multiplication by 2a.
b_{a}=-\frac{a}{2}+\frac{5}{a}
Divide -a^{2}+10 by 2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}