Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-9x+8=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\times 8}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -9 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\times 8}}{2\times 9}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-36\times 8}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-9\right)±\sqrt{81-288}}{2\times 9}
Multiply -36 times 8.
x=\frac{-\left(-9\right)±\sqrt{-207}}{2\times 9}
Add 81 to -288.
x=\frac{-\left(-9\right)±3\sqrt{23}i}{2\times 9}
Take the square root of -207.
x=\frac{9±3\sqrt{23}i}{2\times 9}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{23}i}{18}
Multiply 2 times 9.
x=\frac{9+3\sqrt{23}i}{18}
Now solve the equation x=\frac{9±3\sqrt{23}i}{18} when ± is plus. Add 9 to 3i\sqrt{23}.
x=\frac{\sqrt{23}i}{6}+\frac{1}{2}
Divide 9+3i\sqrt{23} by 18.
x=\frac{-3\sqrt{23}i+9}{18}
Now solve the equation x=\frac{9±3\sqrt{23}i}{18} when ± is minus. Subtract 3i\sqrt{23} from 9.
x=-\frac{\sqrt{23}i}{6}+\frac{1}{2}
Divide 9-3i\sqrt{23} by 18.
x=\frac{\sqrt{23}i}{6}+\frac{1}{2} x=-\frac{\sqrt{23}i}{6}+\frac{1}{2}
The equation is now solved.
9x^{2}-9x+8=0
Swap sides so that all variable terms are on the left hand side.
9x^{2}-9x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-9x}{9}=-\frac{8}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{9}{9}\right)x=-\frac{8}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-x=-\frac{8}{9}
Divide -9 by 9.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{8}{9}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{8}{9}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{23}{36}
Add -\frac{8}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{36}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{23}i}{6} x-\frac{1}{2}=-\frac{\sqrt{23}i}{6}
Simplify.
x=\frac{\sqrt{23}i}{6}+\frac{1}{2} x=-\frac{\sqrt{23}i}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.