Solve for g
g=\frac{x-9}{x}
x\neq 0
Solve for x
x=-\frac{9}{g-1}
g\neq 1
Graph
Share
Copied to clipboard
9+xg-x=0
Swap sides so that all variable terms are on the left hand side.
xg-x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
xg=-9+x
Add x to both sides.
xg=x-9
The equation is in standard form.
\frac{xg}{x}=\frac{x-9}{x}
Divide both sides by x.
g=\frac{x-9}{x}
Dividing by x undoes the multiplication by x.
9+xg-x=0
Swap sides so that all variable terms are on the left hand side.
xg-x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\left(g-1\right)x=-9
Combine all terms containing x.
\frac{\left(g-1\right)x}{g-1}=-\frac{9}{g-1}
Divide both sides by g-1.
x=-\frac{9}{g-1}
Dividing by g-1 undoes the multiplication by g-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}