Solve for x
x = \frac{15 \sqrt{7} + 25}{2} \approx 32.343134833
x=\frac{25-15\sqrt{7}}{2}\approx -7.343134833
Graph
Share
Copied to clipboard
8x^{2}-200x-1900=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 8\left(-1900\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -200 for b, and -1900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 8\left(-1900\right)}}{2\times 8}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000-32\left(-1900\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-200\right)±\sqrt{40000+60800}}{2\times 8}
Multiply -32 times -1900.
x=\frac{-\left(-200\right)±\sqrt{100800}}{2\times 8}
Add 40000 to 60800.
x=\frac{-\left(-200\right)±120\sqrt{7}}{2\times 8}
Take the square root of 100800.
x=\frac{200±120\sqrt{7}}{2\times 8}
The opposite of -200 is 200.
x=\frac{200±120\sqrt{7}}{16}
Multiply 2 times 8.
x=\frac{120\sqrt{7}+200}{16}
Now solve the equation x=\frac{200±120\sqrt{7}}{16} when ± is plus. Add 200 to 120\sqrt{7}.
x=\frac{15\sqrt{7}+25}{2}
Divide 200+120\sqrt{7} by 16.
x=\frac{200-120\sqrt{7}}{16}
Now solve the equation x=\frac{200±120\sqrt{7}}{16} when ± is minus. Subtract 120\sqrt{7} from 200.
x=\frac{25-15\sqrt{7}}{2}
Divide 200-120\sqrt{7} by 16.
x=\frac{15\sqrt{7}+25}{2} x=\frac{25-15\sqrt{7}}{2}
The equation is now solved.
8x^{2}-200x-1900=0
Swap sides so that all variable terms are on the left hand side.
8x^{2}-200x=1900
Add 1900 to both sides. Anything plus zero gives itself.
\frac{8x^{2}-200x}{8}=\frac{1900}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{200}{8}\right)x=\frac{1900}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-25x=\frac{1900}{8}
Divide -200 by 8.
x^{2}-25x=\frac{475}{2}
Reduce the fraction \frac{1900}{8} to lowest terms by extracting and canceling out 4.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\frac{475}{2}+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=\frac{475}{2}+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{1575}{4}
Add \frac{475}{2} to \frac{625}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{2}\right)^{2}=\frac{1575}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{1575}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{15\sqrt{7}}{2} x-\frac{25}{2}=-\frac{15\sqrt{7}}{2}
Simplify.
x=\frac{15\sqrt{7}+25}{2} x=\frac{25-15\sqrt{7}}{2}
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}