Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-200x-1900=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 8\left(-1900\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -200 for b, and -1900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 8\left(-1900\right)}}{2\times 8}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000-32\left(-1900\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-200\right)±\sqrt{40000+60800}}{2\times 8}
Multiply -32 times -1900.
x=\frac{-\left(-200\right)±\sqrt{100800}}{2\times 8}
Add 40000 to 60800.
x=\frac{-\left(-200\right)±120\sqrt{7}}{2\times 8}
Take the square root of 100800.
x=\frac{200±120\sqrt{7}}{2\times 8}
The opposite of -200 is 200.
x=\frac{200±120\sqrt{7}}{16}
Multiply 2 times 8.
x=\frac{120\sqrt{7}+200}{16}
Now solve the equation x=\frac{200±120\sqrt{7}}{16} when ± is plus. Add 200 to 120\sqrt{7}.
x=\frac{15\sqrt{7}+25}{2}
Divide 200+120\sqrt{7} by 16.
x=\frac{200-120\sqrt{7}}{16}
Now solve the equation x=\frac{200±120\sqrt{7}}{16} when ± is minus. Subtract 120\sqrt{7} from 200.
x=\frac{25-15\sqrt{7}}{2}
Divide 200-120\sqrt{7} by 16.
x=\frac{15\sqrt{7}+25}{2} x=\frac{25-15\sqrt{7}}{2}
The equation is now solved.
8x^{2}-200x-1900=0
Swap sides so that all variable terms are on the left hand side.
8x^{2}-200x=1900
Add 1900 to both sides. Anything plus zero gives itself.
\frac{8x^{2}-200x}{8}=\frac{1900}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{200}{8}\right)x=\frac{1900}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-25x=\frac{1900}{8}
Divide -200 by 8.
x^{2}-25x=\frac{475}{2}
Reduce the fraction \frac{1900}{8} to lowest terms by extracting and canceling out 4.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\frac{475}{2}+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=\frac{475}{2}+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{1575}{4}
Add \frac{475}{2} to \frac{625}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{2}\right)^{2}=\frac{1575}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{1575}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{15\sqrt{7}}{2} x-\frac{25}{2}=-\frac{15\sqrt{7}}{2}
Simplify.
x=\frac{15\sqrt{7}+25}{2} x=\frac{25-15\sqrt{7}}{2}
Add \frac{25}{2} to both sides of the equation.