Solve for n
n = -\frac{81}{7} = -11\frac{4}{7} \approx -11.571428571
n=12
Share
Copied to clipboard
7n^{2}-3n-972=0
Swap sides so that all variable terms are on the left hand side.
a+b=-3 ab=7\left(-972\right)=-6804
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7n^{2}+an+bn-972. To find a and b, set up a system to be solved.
1,-6804 2,-3402 3,-2268 4,-1701 6,-1134 7,-972 9,-756 12,-567 14,-486 18,-378 21,-324 27,-252 28,-243 36,-189 42,-162 54,-126 63,-108 81,-84
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6804.
1-6804=-6803 2-3402=-3400 3-2268=-2265 4-1701=-1697 6-1134=-1128 7-972=-965 9-756=-747 12-567=-555 14-486=-472 18-378=-360 21-324=-303 27-252=-225 28-243=-215 36-189=-153 42-162=-120 54-126=-72 63-108=-45 81-84=-3
Calculate the sum for each pair.
a=-84 b=81
The solution is the pair that gives sum -3.
\left(7n^{2}-84n\right)+\left(81n-972\right)
Rewrite 7n^{2}-3n-972 as \left(7n^{2}-84n\right)+\left(81n-972\right).
7n\left(n-12\right)+81\left(n-12\right)
Factor out 7n in the first and 81 in the second group.
\left(n-12\right)\left(7n+81\right)
Factor out common term n-12 by using distributive property.
n=12 n=-\frac{81}{7}
To find equation solutions, solve n-12=0 and 7n+81=0.
7n^{2}-3n-972=0
Swap sides so that all variable terms are on the left hand side.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-972\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -3 for b, and -972 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-972\right)}}{2\times 7}
Square -3.
n=\frac{-\left(-3\right)±\sqrt{9-28\left(-972\right)}}{2\times 7}
Multiply -4 times 7.
n=\frac{-\left(-3\right)±\sqrt{9+27216}}{2\times 7}
Multiply -28 times -972.
n=\frac{-\left(-3\right)±\sqrt{27225}}{2\times 7}
Add 9 to 27216.
n=\frac{-\left(-3\right)±165}{2\times 7}
Take the square root of 27225.
n=\frac{3±165}{2\times 7}
The opposite of -3 is 3.
n=\frac{3±165}{14}
Multiply 2 times 7.
n=\frac{168}{14}
Now solve the equation n=\frac{3±165}{14} when ± is plus. Add 3 to 165.
n=12
Divide 168 by 14.
n=-\frac{162}{14}
Now solve the equation n=\frac{3±165}{14} when ± is minus. Subtract 165 from 3.
n=-\frac{81}{7}
Reduce the fraction \frac{-162}{14} to lowest terms by extracting and canceling out 2.
n=12 n=-\frac{81}{7}
The equation is now solved.
7n^{2}-3n-972=0
Swap sides so that all variable terms are on the left hand side.
7n^{2}-3n=972
Add 972 to both sides. Anything plus zero gives itself.
\frac{7n^{2}-3n}{7}=\frac{972}{7}
Divide both sides by 7.
n^{2}-\frac{3}{7}n=\frac{972}{7}
Dividing by 7 undoes the multiplication by 7.
n^{2}-\frac{3}{7}n+\left(-\frac{3}{14}\right)^{2}=\frac{972}{7}+\left(-\frac{3}{14}\right)^{2}
Divide -\frac{3}{7}, the coefficient of the x term, by 2 to get -\frac{3}{14}. Then add the square of -\frac{3}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{3}{7}n+\frac{9}{196}=\frac{972}{7}+\frac{9}{196}
Square -\frac{3}{14} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{3}{7}n+\frac{9}{196}=\frac{27225}{196}
Add \frac{972}{7} to \frac{9}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{3}{14}\right)^{2}=\frac{27225}{196}
Factor n^{2}-\frac{3}{7}n+\frac{9}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{14}\right)^{2}}=\sqrt{\frac{27225}{196}}
Take the square root of both sides of the equation.
n-\frac{3}{14}=\frac{165}{14} n-\frac{3}{14}=-\frac{165}{14}
Simplify.
n=12 n=-\frac{81}{7}
Add \frac{3}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}