Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-40x-675=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 3\left(-675\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -40 for b, and -675 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 3\left(-675\right)}}{2\times 3}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-12\left(-675\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-40\right)±\sqrt{1600+8100}}{2\times 3}
Multiply -12 times -675.
x=\frac{-\left(-40\right)±\sqrt{9700}}{2\times 3}
Add 1600 to 8100.
x=\frac{-\left(-40\right)±10\sqrt{97}}{2\times 3}
Take the square root of 9700.
x=\frac{40±10\sqrt{97}}{2\times 3}
The opposite of -40 is 40.
x=\frac{40±10\sqrt{97}}{6}
Multiply 2 times 3.
x=\frac{10\sqrt{97}+40}{6}
Now solve the equation x=\frac{40±10\sqrt{97}}{6} when ± is plus. Add 40 to 10\sqrt{97}.
x=\frac{5\sqrt{97}+20}{3}
Divide 40+10\sqrt{97} by 6.
x=\frac{40-10\sqrt{97}}{6}
Now solve the equation x=\frac{40±10\sqrt{97}}{6} when ± is minus. Subtract 10\sqrt{97} from 40.
x=\frac{20-5\sqrt{97}}{3}
Divide 40-10\sqrt{97} by 6.
x=\frac{5\sqrt{97}+20}{3} x=\frac{20-5\sqrt{97}}{3}
The equation is now solved.
3x^{2}-40x-675=0
Swap sides so that all variable terms are on the left hand side.
3x^{2}-40x=675
Add 675 to both sides. Anything plus zero gives itself.
\frac{3x^{2}-40x}{3}=\frac{675}{3}
Divide both sides by 3.
x^{2}-\frac{40}{3}x=\frac{675}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{40}{3}x=225
Divide 675 by 3.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=225+\left(-\frac{20}{3}\right)^{2}
Divide -\frac{40}{3}, the coefficient of the x term, by 2 to get -\frac{20}{3}. Then add the square of -\frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{3}x+\frac{400}{9}=225+\frac{400}{9}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{2425}{9}
Add 225 to \frac{400}{9}.
\left(x-\frac{20}{3}\right)^{2}=\frac{2425}{9}
Factor x^{2}-\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{2425}{9}}
Take the square root of both sides of the equation.
x-\frac{20}{3}=\frac{5\sqrt{97}}{3} x-\frac{20}{3}=-\frac{5\sqrt{97}}{3}
Simplify.
x=\frac{5\sqrt{97}+20}{3} x=\frac{20-5\sqrt{97}}{3}
Add \frac{20}{3} to both sides of the equation.