Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-3x+16=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\times 16}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\times 16}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\times 16}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9-192}}{2\times 3}
Multiply -12 times 16.
x=\frac{-\left(-3\right)±\sqrt{-183}}{2\times 3}
Add 9 to -192.
x=\frac{-\left(-3\right)±\sqrt{183}i}{2\times 3}
Take the square root of -183.
x=\frac{3±\sqrt{183}i}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±\sqrt{183}i}{6}
Multiply 2 times 3.
x=\frac{3+\sqrt{183}i}{6}
Now solve the equation x=\frac{3±\sqrt{183}i}{6} when ± is plus. Add 3 to i\sqrt{183}.
x=\frac{\sqrt{183}i}{6}+\frac{1}{2}
Divide 3+i\sqrt{183} by 6.
x=\frac{-\sqrt{183}i+3}{6}
Now solve the equation x=\frac{3±\sqrt{183}i}{6} when ± is minus. Subtract i\sqrt{183} from 3.
x=-\frac{\sqrt{183}i}{6}+\frac{1}{2}
Divide 3-i\sqrt{183} by 6.
x=\frac{\sqrt{183}i}{6}+\frac{1}{2} x=-\frac{\sqrt{183}i}{6}+\frac{1}{2}
The equation is now solved.
3x^{2}-3x+16=0
Swap sides so that all variable terms are on the left hand side.
3x^{2}-3x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-3x}{3}=-\frac{16}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=-\frac{16}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=-\frac{16}{3}
Divide -3 by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{16}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{16}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{61}{12}
Add -\frac{16}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{61}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{61}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{183}i}{6} x-\frac{1}{2}=-\frac{\sqrt{183}i}{6}
Simplify.
x=\frac{\sqrt{183}i}{6}+\frac{1}{2} x=-\frac{\sqrt{183}i}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.