Solve for x (complex solution)
x=-15+15\sqrt{3}i\approx -15+25.980762114i
x=-15\sqrt{3}i-15\approx -15-25.980762114i
Graph
Share
Copied to clipboard
3x^{2}+2700+90x=0
Swap sides so that all variable terms are on the left hand side.
3x^{2}+90x+2700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\times 3\times 2700}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 90 for b, and 2700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\times 3\times 2700}}{2\times 3}
Square 90.
x=\frac{-90±\sqrt{8100-12\times 2700}}{2\times 3}
Multiply -4 times 3.
x=\frac{-90±\sqrt{8100-32400}}{2\times 3}
Multiply -12 times 2700.
x=\frac{-90±\sqrt{-24300}}{2\times 3}
Add 8100 to -32400.
x=\frac{-90±90\sqrt{3}i}{2\times 3}
Take the square root of -24300.
x=\frac{-90±90\sqrt{3}i}{6}
Multiply 2 times 3.
x=\frac{-90+90\sqrt{3}i}{6}
Now solve the equation x=\frac{-90±90\sqrt{3}i}{6} when ± is plus. Add -90 to 90i\sqrt{3}.
x=-15+15\sqrt{3}i
Divide -90+90i\sqrt{3} by 6.
x=\frac{-90\sqrt{3}i-90}{6}
Now solve the equation x=\frac{-90±90\sqrt{3}i}{6} when ± is minus. Subtract 90i\sqrt{3} from -90.
x=-15\sqrt{3}i-15
Divide -90-90i\sqrt{3} by 6.
x=-15+15\sqrt{3}i x=-15\sqrt{3}i-15
The equation is now solved.
3x^{2}+2700+90x=0
Swap sides so that all variable terms are on the left hand side.
3x^{2}+90x=-2700
Subtract 2700 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+90x}{3}=-\frac{2700}{3}
Divide both sides by 3.
x^{2}+\frac{90}{3}x=-\frac{2700}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+30x=-\frac{2700}{3}
Divide 90 by 3.
x^{2}+30x=-900
Divide -2700 by 3.
x^{2}+30x+15^{2}=-900+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=-900+225
Square 15.
x^{2}+30x+225=-675
Add -900 to 225.
\left(x+15\right)^{2}=-675
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{-675}
Take the square root of both sides of the equation.
x+15=15\sqrt{3}i x+15=-15\sqrt{3}i
Simplify.
x=-15+15\sqrt{3}i x=-15\sqrt{3}i-15
Subtract 15 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}