Solve for a
a=\frac{c-4b}{12}
Solve for b
b=\frac{c-12a}{4}
Share
Copied to clipboard
0=3a\left(-4\right)+2b\left(-2\right)+c
Calculate 2 to the power of 2 and get 4.
0=-12a+2b\left(-2\right)+c
Multiply 3 and -4 to get -12.
0=-12a-4b+c
Multiply 2 and -2 to get -4.
-12a-4b+c=0
Swap sides so that all variable terms are on the left hand side.
-12a+c=4b
Add 4b to both sides. Anything plus zero gives itself.
-12a=4b-c
Subtract c from both sides.
\frac{-12a}{-12}=\frac{4b-c}{-12}
Divide both sides by -12.
a=\frac{4b-c}{-12}
Dividing by -12 undoes the multiplication by -12.
a=\frac{c}{12}-\frac{b}{3}
Divide 4b-c by -12.
0=3a\left(-4\right)+2b\left(-2\right)+c
Calculate 2 to the power of 2 and get 4.
0=-12a+2b\left(-2\right)+c
Multiply 3 and -4 to get -12.
0=-12a-4b+c
Multiply 2 and -2 to get -4.
-12a-4b+c=0
Swap sides so that all variable terms are on the left hand side.
-4b+c=12a
Add 12a to both sides. Anything plus zero gives itself.
-4b=12a-c
Subtract c from both sides.
\frac{-4b}{-4}=\frac{12a-c}{-4}
Divide both sides by -4.
b=\frac{12a-c}{-4}
Dividing by -4 undoes the multiplication by -4.
b=\frac{c}{4}-3a
Divide 12a-c by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}