Solve for x
x = \frac{\sqrt{681} - 3}{4} \approx 5.773994175
x=\frac{-\sqrt{681}-3}{4}\approx -7.273994175
Graph
Share
Copied to clipboard
2x^{2}+3x-84=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-84\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-84\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-84\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+672}}{2\times 2}
Multiply -8 times -84.
x=\frac{-3±\sqrt{681}}{2\times 2}
Add 9 to 672.
x=\frac{-3±\sqrt{681}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{681}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{681}}{4} when ± is plus. Add -3 to \sqrt{681}.
x=\frac{-\sqrt{681}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{681}}{4} when ± is minus. Subtract \sqrt{681} from -3.
x=\frac{\sqrt{681}-3}{4} x=\frac{-\sqrt{681}-3}{4}
The equation is now solved.
2x^{2}+3x-84=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+3x=84
Add 84 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+3x}{2}=\frac{84}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{84}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x=42
Divide 84 by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=42+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=42+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{681}{16}
Add 42 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{681}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{681}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{681}}{4} x+\frac{3}{4}=-\frac{\sqrt{681}}{4}
Simplify.
x=\frac{\sqrt{681}-3}{4} x=\frac{-\sqrt{681}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}