Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

2n^{2}+3n-340=0
Swap sides so that all variable terms are on the left hand side.
n=\frac{-3±\sqrt{3^{2}-4\times 2\left(-340\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -340 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-3±\sqrt{9-4\times 2\left(-340\right)}}{2\times 2}
Square 3.
n=\frac{-3±\sqrt{9-8\left(-340\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-3±\sqrt{9+2720}}{2\times 2}
Multiply -8 times -340.
n=\frac{-3±\sqrt{2729}}{2\times 2}
Add 9 to 2720.
n=\frac{-3±\sqrt{2729}}{4}
Multiply 2 times 2.
n=\frac{\sqrt{2729}-3}{4}
Now solve the equation n=\frac{-3±\sqrt{2729}}{4} when ± is plus. Add -3 to \sqrt{2729}.
n=\frac{-\sqrt{2729}-3}{4}
Now solve the equation n=\frac{-3±\sqrt{2729}}{4} when ± is minus. Subtract \sqrt{2729} from -3.
n=\frac{\sqrt{2729}-3}{4} n=\frac{-\sqrt{2729}-3}{4}
The equation is now solved.
2n^{2}+3n-340=0
Swap sides so that all variable terms are on the left hand side.
2n^{2}+3n=340
Add 340 to both sides. Anything plus zero gives itself.
\frac{2n^{2}+3n}{2}=\frac{340}{2}
Divide both sides by 2.
n^{2}+\frac{3}{2}n=\frac{340}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}+\frac{3}{2}n=170
Divide 340 by 2.
n^{2}+\frac{3}{2}n+\left(\frac{3}{4}\right)^{2}=170+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{3}{2}n+\frac{9}{16}=170+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{3}{2}n+\frac{9}{16}=\frac{2729}{16}
Add 170 to \frac{9}{16}.
\left(n+\frac{3}{4}\right)^{2}=\frac{2729}{16}
Factor n^{2}+\frac{3}{2}n+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{4}\right)^{2}}=\sqrt{\frac{2729}{16}}
Take the square root of both sides of the equation.
n+\frac{3}{4}=\frac{\sqrt{2729}}{4} n+\frac{3}{4}=-\frac{\sqrt{2729}}{4}
Simplify.
n=\frac{\sqrt{2729}-3}{4} n=\frac{-\sqrt{2729}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.