Solve for c
c = \frac{\sqrt{73} + 5}{2} \approx 6.772001873
c=\frac{5-\sqrt{73}}{2}\approx -1.772001873
Share
Copied to clipboard
2c^{2}-10c-24=0
Swap sides so that all variable terms are on the left hand side.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-10\right)±\sqrt{100-4\times 2\left(-24\right)}}{2\times 2}
Square -10.
c=\frac{-\left(-10\right)±\sqrt{100-8\left(-24\right)}}{2\times 2}
Multiply -4 times 2.
c=\frac{-\left(-10\right)±\sqrt{100+192}}{2\times 2}
Multiply -8 times -24.
c=\frac{-\left(-10\right)±\sqrt{292}}{2\times 2}
Add 100 to 192.
c=\frac{-\left(-10\right)±2\sqrt{73}}{2\times 2}
Take the square root of 292.
c=\frac{10±2\sqrt{73}}{2\times 2}
The opposite of -10 is 10.
c=\frac{10±2\sqrt{73}}{4}
Multiply 2 times 2.
c=\frac{2\sqrt{73}+10}{4}
Now solve the equation c=\frac{10±2\sqrt{73}}{4} when ± is plus. Add 10 to 2\sqrt{73}.
c=\frac{\sqrt{73}+5}{2}
Divide 10+2\sqrt{73} by 4.
c=\frac{10-2\sqrt{73}}{4}
Now solve the equation c=\frac{10±2\sqrt{73}}{4} when ± is minus. Subtract 2\sqrt{73} from 10.
c=\frac{5-\sqrt{73}}{2}
Divide 10-2\sqrt{73} by 4.
c=\frac{\sqrt{73}+5}{2} c=\frac{5-\sqrt{73}}{2}
The equation is now solved.
2c^{2}-10c-24=0
Swap sides so that all variable terms are on the left hand side.
2c^{2}-10c=24
Add 24 to both sides. Anything plus zero gives itself.
\frac{2c^{2}-10c}{2}=\frac{24}{2}
Divide both sides by 2.
c^{2}+\left(-\frac{10}{2}\right)c=\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
c^{2}-5c=\frac{24}{2}
Divide -10 by 2.
c^{2}-5c=12
Divide 24 by 2.
c^{2}-5c+\left(-\frac{5}{2}\right)^{2}=12+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-5c+\frac{25}{4}=12+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
c^{2}-5c+\frac{25}{4}=\frac{73}{4}
Add 12 to \frac{25}{4}.
\left(c-\frac{5}{2}\right)^{2}=\frac{73}{4}
Factor c^{2}-5c+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{5}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Take the square root of both sides of the equation.
c-\frac{5}{2}=\frac{\sqrt{73}}{2} c-\frac{5}{2}=-\frac{\sqrt{73}}{2}
Simplify.
c=\frac{\sqrt{73}+5}{2} c=\frac{5-\sqrt{73}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}