Solve for x (complex solution)
x=-2\sqrt{3}i-2\approx -2-3.464101615i
x=-2+2\sqrt{3}i\approx -2+3.464101615i
Graph
Share
Copied to clipboard
0=2\left(x^{2}+4x+4\right)+24
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
0=2x^{2}+8x+8+24
Use the distributive property to multiply 2 by x^{2}+4x+4.
0=2x^{2}+8x+32
Add 8 and 24 to get 32.
2x^{2}+8x+32=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 32}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 32}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\times 32}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64-256}}{2\times 2}
Multiply -8 times 32.
x=\frac{-8±\sqrt{-192}}{2\times 2}
Add 64 to -256.
x=\frac{-8±8\sqrt{3}i}{2\times 2}
Take the square root of -192.
x=\frac{-8±8\sqrt{3}i}{4}
Multiply 2 times 2.
x=\frac{-8+8\sqrt{3}i}{4}
Now solve the equation x=\frac{-8±8\sqrt{3}i}{4} when ± is plus. Add -8 to 8i\sqrt{3}.
x=-2+2\sqrt{3}i
Divide -8+8i\sqrt{3} by 4.
x=\frac{-8\sqrt{3}i-8}{4}
Now solve the equation x=\frac{-8±8\sqrt{3}i}{4} when ± is minus. Subtract 8i\sqrt{3} from -8.
x=-2\sqrt{3}i-2
Divide -8-8i\sqrt{3} by 4.
x=-2+2\sqrt{3}i x=-2\sqrt{3}i-2
The equation is now solved.
0=2\left(x^{2}+4x+4\right)+24
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
0=2x^{2}+8x+8+24
Use the distributive property to multiply 2 by x^{2}+4x+4.
0=2x^{2}+8x+32
Add 8 and 24 to get 32.
2x^{2}+8x+32=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+8x=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+8x}{2}=-\frac{32}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=-\frac{32}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=-\frac{32}{2}
Divide 8 by 2.
x^{2}+4x=-16
Divide -32 by 2.
x^{2}+4x+2^{2}=-16+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-16+4
Square 2.
x^{2}+4x+4=-12
Add -16 to 4.
\left(x+2\right)^{2}=-12
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-12}
Take the square root of both sides of the equation.
x+2=2\sqrt{3}i x+2=-2\sqrt{3}i
Simplify.
x=-2+2\sqrt{3}i x=-2\sqrt{3}i-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}