Solve for m
m=\frac{\sqrt{385}}{28}-\frac{3}{4}\approx -0.049235112
m=-\frac{\sqrt{385}}{28}-\frac{3}{4}\approx -1.450764888
Share
Copied to clipboard
14m^{2}+21m+1=0
Swap sides so that all variable terms are on the left hand side.
m=\frac{-21±\sqrt{21^{2}-4\times 14}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 21 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-21±\sqrt{441-4\times 14}}{2\times 14}
Square 21.
m=\frac{-21±\sqrt{441-56}}{2\times 14}
Multiply -4 times 14.
m=\frac{-21±\sqrt{385}}{2\times 14}
Add 441 to -56.
m=\frac{-21±\sqrt{385}}{28}
Multiply 2 times 14.
m=\frac{\sqrt{385}-21}{28}
Now solve the equation m=\frac{-21±\sqrt{385}}{28} when ± is plus. Add -21 to \sqrt{385}.
m=\frac{\sqrt{385}}{28}-\frac{3}{4}
Divide -21+\sqrt{385} by 28.
m=\frac{-\sqrt{385}-21}{28}
Now solve the equation m=\frac{-21±\sqrt{385}}{28} when ± is minus. Subtract \sqrt{385} from -21.
m=-\frac{\sqrt{385}}{28}-\frac{3}{4}
Divide -21-\sqrt{385} by 28.
m=\frac{\sqrt{385}}{28}-\frac{3}{4} m=-\frac{\sqrt{385}}{28}-\frac{3}{4}
The equation is now solved.
14m^{2}+21m+1=0
Swap sides so that all variable terms are on the left hand side.
14m^{2}+21m=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{14m^{2}+21m}{14}=-\frac{1}{14}
Divide both sides by 14.
m^{2}+\frac{21}{14}m=-\frac{1}{14}
Dividing by 14 undoes the multiplication by 14.
m^{2}+\frac{3}{2}m=-\frac{1}{14}
Reduce the fraction \frac{21}{14} to lowest terms by extracting and canceling out 7.
m^{2}+\frac{3}{2}m+\left(\frac{3}{4}\right)^{2}=-\frac{1}{14}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{3}{2}m+\frac{9}{16}=-\frac{1}{14}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{3}{2}m+\frac{9}{16}=\frac{55}{112}
Add -\frac{1}{14} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{3}{4}\right)^{2}=\frac{55}{112}
Factor m^{2}+\frac{3}{2}m+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{3}{4}\right)^{2}}=\sqrt{\frac{55}{112}}
Take the square root of both sides of the equation.
m+\frac{3}{4}=\frac{\sqrt{385}}{28} m+\frac{3}{4}=-\frac{\sqrt{385}}{28}
Simplify.
m=\frac{\sqrt{385}}{28}-\frac{3}{4} m=-\frac{\sqrt{385}}{28}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}