Solve for t
t=\sqrt{29}+3\approx 8.385164807
t=3-\sqrt{29}\approx -2.385164807
Share
Copied to clipboard
100+30t-5t^{2}=0
Swap sides so that all variable terms are on the left hand side.
-5t^{2}+30t+100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-30±\sqrt{30^{2}-4\left(-5\right)\times 100}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 30 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-30±\sqrt{900-4\left(-5\right)\times 100}}{2\left(-5\right)}
Square 30.
t=\frac{-30±\sqrt{900+20\times 100}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-30±\sqrt{900+2000}}{2\left(-5\right)}
Multiply 20 times 100.
t=\frac{-30±\sqrt{2900}}{2\left(-5\right)}
Add 900 to 2000.
t=\frac{-30±10\sqrt{29}}{2\left(-5\right)}
Take the square root of 2900.
t=\frac{-30±10\sqrt{29}}{-10}
Multiply 2 times -5.
t=\frac{10\sqrt{29}-30}{-10}
Now solve the equation t=\frac{-30±10\sqrt{29}}{-10} when ± is plus. Add -30 to 10\sqrt{29}.
t=3-\sqrt{29}
Divide -30+10\sqrt{29} by -10.
t=\frac{-10\sqrt{29}-30}{-10}
Now solve the equation t=\frac{-30±10\sqrt{29}}{-10} when ± is minus. Subtract 10\sqrt{29} from -30.
t=\sqrt{29}+3
Divide -30-10\sqrt{29} by -10.
t=3-\sqrt{29} t=\sqrt{29}+3
The equation is now solved.
100+30t-5t^{2}=0
Swap sides so that all variable terms are on the left hand side.
30t-5t^{2}=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
-5t^{2}+30t=-100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}+30t}{-5}=-\frac{100}{-5}
Divide both sides by -5.
t^{2}+\frac{30}{-5}t=-\frac{100}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-6t=-\frac{100}{-5}
Divide 30 by -5.
t^{2}-6t=20
Divide -100 by -5.
t^{2}-6t+\left(-3\right)^{2}=20+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=20+9
Square -3.
t^{2}-6t+9=29
Add 20 to 9.
\left(t-3\right)^{2}=29
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{29}
Take the square root of both sides of the equation.
t-3=\sqrt{29} t-3=-\sqrt{29}
Simplify.
t=\sqrt{29}+3 t=3-\sqrt{29}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}