Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-3x-6=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-\left(-3\right)±\sqrt{-15}}{2\left(-1\right)}
Add 9 to -24.
x=\frac{-\left(-3\right)±\sqrt{15}i}{2\left(-1\right)}
Take the square root of -15.
x=\frac{3±\sqrt{15}i}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{15}i}{-2}
Multiply 2 times -1.
x=\frac{3+\sqrt{15}i}{-2}
Now solve the equation x=\frac{3±\sqrt{15}i}{-2} when ± is plus. Add 3 to i\sqrt{15}.
x=\frac{-\sqrt{15}i-3}{2}
Divide 3+i\sqrt{15} by -2.
x=\frac{-\sqrt{15}i+3}{-2}
Now solve the equation x=\frac{3±\sqrt{15}i}{-2} when ± is minus. Subtract i\sqrt{15} from 3.
x=\frac{-3+\sqrt{15}i}{2}
Divide 3-i\sqrt{15} by -2.
x=\frac{-\sqrt{15}i-3}{2} x=\frac{-3+\sqrt{15}i}{2}
The equation is now solved.
-x^{2}-3x-6=0
Swap sides so that all variable terms are on the left hand side.
-x^{2}-3x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{-x^{2}-3x}{-1}=\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+3x=\frac{6}{-1}
Divide -3 by -1.
x^{2}+3x=-6
Divide 6 by -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-6+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-6+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{15}{4}
Add -6 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{15}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{15}i}{2} x+\frac{3}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
x=\frac{-3+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.