Solve for t
t = \frac{\sqrt{5} + 5}{2} \approx 3.618033989
t = \frac{5 - \sqrt{5}}{2} \approx 1.381966011
Share
Copied to clipboard
-t^{2}+5t-5=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 5.
t=\frac{-5±\sqrt{25+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-5±\sqrt{25-20}}{2\left(-1\right)}
Multiply 4 times -5.
t=\frac{-5±\sqrt{5}}{2\left(-1\right)}
Add 25 to -20.
t=\frac{-5±\sqrt{5}}{-2}
Multiply 2 times -1.
t=\frac{\sqrt{5}-5}{-2}
Now solve the equation t=\frac{-5±\sqrt{5}}{-2} when ± is plus. Add -5 to \sqrt{5}.
t=\frac{5-\sqrt{5}}{2}
Divide -5+\sqrt{5} by -2.
t=\frac{-\sqrt{5}-5}{-2}
Now solve the equation t=\frac{-5±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from -5.
t=\frac{\sqrt{5}+5}{2}
Divide -5-\sqrt{5} by -2.
t=\frac{5-\sqrt{5}}{2} t=\frac{\sqrt{5}+5}{2}
The equation is now solved.
-t^{2}+5t-5=0
Swap sides so that all variable terms are on the left hand side.
-t^{2}+5t=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{-t^{2}+5t}{-1}=\frac{5}{-1}
Divide both sides by -1.
t^{2}+\frac{5}{-1}t=\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-5t=\frac{5}{-1}
Divide 5 by -1.
t^{2}-5t=-5
Divide 5 by -1.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=-5+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-5t+\frac{25}{4}=-5+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-5t+\frac{25}{4}=\frac{5}{4}
Add -5 to \frac{25}{4}.
\left(t-\frac{5}{2}\right)^{2}=\frac{5}{4}
Factor t^{2}-5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
t-\frac{5}{2}=\frac{\sqrt{5}}{2} t-\frac{5}{2}=-\frac{\sqrt{5}}{2}
Simplify.
t=\frac{\sqrt{5}+5}{2} t=\frac{5-\sqrt{5}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}