Solve for x
x=\frac{\sqrt{73}-1}{9}\approx 0.838222638
x=\frac{-\sqrt{73}-1}{9}\approx -1.060444861
Graph
Share
Copied to clipboard
-9x^{2}-2x+8=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -2 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-2\right)±\sqrt{4+288}}{2\left(-9\right)}
Multiply 36 times 8.
x=\frac{-\left(-2\right)±\sqrt{292}}{2\left(-9\right)}
Add 4 to 288.
x=\frac{-\left(-2\right)±2\sqrt{73}}{2\left(-9\right)}
Take the square root of 292.
x=\frac{2±2\sqrt{73}}{2\left(-9\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{73}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{73}+2}{-18}
Now solve the equation x=\frac{2±2\sqrt{73}}{-18} when ± is plus. Add 2 to 2\sqrt{73}.
x=\frac{-\sqrt{73}-1}{9}
Divide 2+2\sqrt{73} by -18.
x=\frac{2-2\sqrt{73}}{-18}
Now solve the equation x=\frac{2±2\sqrt{73}}{-18} when ± is minus. Subtract 2\sqrt{73} from 2.
x=\frac{\sqrt{73}-1}{9}
Divide 2-2\sqrt{73} by -18.
x=\frac{-\sqrt{73}-1}{9} x=\frac{\sqrt{73}-1}{9}
The equation is now solved.
-9x^{2}-2x+8=0
Swap sides so that all variable terms are on the left hand side.
-9x^{2}-2x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{-9x^{2}-2x}{-9}=-\frac{8}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{2}{-9}\right)x=-\frac{8}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{2}{9}x=-\frac{8}{-9}
Divide -2 by -9.
x^{2}+\frac{2}{9}x=\frac{8}{9}
Divide -8 by -9.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=\frac{8}{9}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{8}{9}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{73}{81}
Add \frac{8}{9} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=\frac{73}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{\frac{73}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{\sqrt{73}}{9} x+\frac{1}{9}=-\frac{\sqrt{73}}{9}
Simplify.
x=\frac{\sqrt{73}-1}{9} x=\frac{-\sqrt{73}-1}{9}
Subtract \frac{1}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}