Solve for x
x=\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}\approx 1
x=-\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}\approx -3.076923161 \cdot 10^{-10}
Graph
Share
Copied to clipboard
0=-325\times 10^{8}x^{2}+325\times 10^{8}x+10
Do the multiplications.
0=-325\times 100000000x^{2}+325\times 10^{8}x+10
Calculate 10 to the power of 8 and get 100000000.
0=-32500000000x^{2}+325\times 10^{8}x+10
Multiply -325 and 100000000 to get -32500000000.
0=-32500000000x^{2}+325\times 100000000x+10
Calculate 10 to the power of 8 and get 100000000.
0=-32500000000x^{2}+32500000000x+10
Multiply 325 and 100000000 to get 32500000000.
-32500000000x^{2}+32500000000x+10=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-32500000000±\sqrt{32500000000^{2}-4\left(-32500000000\right)\times 10}}{2\left(-32500000000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32500000000 for a, 32500000000 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32500000000±\sqrt{1056250000000000000000-4\left(-32500000000\right)\times 10}}{2\left(-32500000000\right)}
Square 32500000000.
x=\frac{-32500000000±\sqrt{1056250000000000000000+130000000000\times 10}}{2\left(-32500000000\right)}
Multiply -4 times -32500000000.
x=\frac{-32500000000±\sqrt{1056250000000000000000+1300000000000}}{2\left(-32500000000\right)}
Multiply 130000000000 times 10.
x=\frac{-32500000000±\sqrt{1056250001300000000000}}{2\left(-32500000000\right)}
Add 1056250000000000000000 to 1300000000000.
x=\frac{-32500000000±100000\sqrt{105625000130}}{2\left(-32500000000\right)}
Take the square root of 1056250001300000000000.
x=\frac{-32500000000±100000\sqrt{105625000130}}{-65000000000}
Multiply 2 times -32500000000.
x=\frac{100000\sqrt{105625000130}-32500000000}{-65000000000}
Now solve the equation x=\frac{-32500000000±100000\sqrt{105625000130}}{-65000000000} when ± is plus. Add -32500000000 to 100000\sqrt{105625000130}.
x=-\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}
Divide -32500000000+100000\sqrt{105625000130} by -65000000000.
x=\frac{-100000\sqrt{105625000130}-32500000000}{-65000000000}
Now solve the equation x=\frac{-32500000000±100000\sqrt{105625000130}}{-65000000000} when ± is minus. Subtract 100000\sqrt{105625000130} from -32500000000.
x=\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}
Divide -32500000000-100000\sqrt{105625000130} by -65000000000.
x=-\frac{\sqrt{105625000130}}{650000}+\frac{1}{2} x=\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}
The equation is now solved.
0=-325\times 10^{8}x^{2}+325\times 10^{8}x+10
Do the multiplications.
0=-325\times 100000000x^{2}+325\times 10^{8}x+10
Calculate 10 to the power of 8 and get 100000000.
0=-32500000000x^{2}+325\times 10^{8}x+10
Multiply -325 and 100000000 to get -32500000000.
0=-32500000000x^{2}+325\times 100000000x+10
Calculate 10 to the power of 8 and get 100000000.
0=-32500000000x^{2}+32500000000x+10
Multiply 325 and 100000000 to get 32500000000.
-32500000000x^{2}+32500000000x+10=0
Swap sides so that all variable terms are on the left hand side.
-32500000000x^{2}+32500000000x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{-32500000000x^{2}+32500000000x}{-32500000000}=-\frac{10}{-32500000000}
Divide both sides by -32500000000.
x^{2}+\frac{32500000000}{-32500000000}x=-\frac{10}{-32500000000}
Dividing by -32500000000 undoes the multiplication by -32500000000.
x^{2}-x=-\frac{10}{-32500000000}
Divide 32500000000 by -32500000000.
x^{2}-x=\frac{1}{3250000000}
Reduce the fraction \frac{-10}{-32500000000} to lowest terms by extracting and canceling out 10.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{3250000000}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{3250000000}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{812500001}{3250000000}
Add \frac{1}{3250000000} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{812500001}{3250000000}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{812500001}{3250000000}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{105625000130}}{650000} x-\frac{1}{2}=-\frac{\sqrt{105625000130}}{650000}
Simplify.
x=\frac{\sqrt{105625000130}}{650000}+\frac{1}{2} x=-\frac{\sqrt{105625000130}}{650000}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}