Solve for x (complex solution)
x=\frac{44+10\sqrt{254}i}{51}\approx 0.862745098+3.124975971i
x=\frac{-10\sqrt{254}i+44}{51}\approx 0.862745098-3.124975971i
Graph
Share
Copied to clipboard
-306x^{2}+528x-3216=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-528±\sqrt{528^{2}-4\left(-306\right)\left(-3216\right)}}{2\left(-306\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -306 for a, 528 for b, and -3216 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-528±\sqrt{278784-4\left(-306\right)\left(-3216\right)}}{2\left(-306\right)}
Square 528.
x=\frac{-528±\sqrt{278784+1224\left(-3216\right)}}{2\left(-306\right)}
Multiply -4 times -306.
x=\frac{-528±\sqrt{278784-3936384}}{2\left(-306\right)}
Multiply 1224 times -3216.
x=\frac{-528±\sqrt{-3657600}}{2\left(-306\right)}
Add 278784 to -3936384.
x=\frac{-528±120\sqrt{254}i}{2\left(-306\right)}
Take the square root of -3657600.
x=\frac{-528±120\sqrt{254}i}{-612}
Multiply 2 times -306.
x=\frac{-528+120\sqrt{254}i}{-612}
Now solve the equation x=\frac{-528±120\sqrt{254}i}{-612} when ± is plus. Add -528 to 120i\sqrt{254}.
x=\frac{-10\sqrt{254}i+44}{51}
Divide -528+120i\sqrt{254} by -612.
x=\frac{-120\sqrt{254}i-528}{-612}
Now solve the equation x=\frac{-528±120\sqrt{254}i}{-612} when ± is minus. Subtract 120i\sqrt{254} from -528.
x=\frac{44+10\sqrt{254}i}{51}
Divide -528-120i\sqrt{254} by -612.
x=\frac{-10\sqrt{254}i+44}{51} x=\frac{44+10\sqrt{254}i}{51}
The equation is now solved.
-306x^{2}+528x-3216=0
Swap sides so that all variable terms are on the left hand side.
-306x^{2}+528x=3216
Add 3216 to both sides. Anything plus zero gives itself.
\frac{-306x^{2}+528x}{-306}=\frac{3216}{-306}
Divide both sides by -306.
x^{2}+\frac{528}{-306}x=\frac{3216}{-306}
Dividing by -306 undoes the multiplication by -306.
x^{2}-\frac{88}{51}x=\frac{3216}{-306}
Reduce the fraction \frac{528}{-306} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{88}{51}x=-\frac{536}{51}
Reduce the fraction \frac{3216}{-306} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{88}{51}x+\left(-\frac{44}{51}\right)^{2}=-\frac{536}{51}+\left(-\frac{44}{51}\right)^{2}
Divide -\frac{88}{51}, the coefficient of the x term, by 2 to get -\frac{44}{51}. Then add the square of -\frac{44}{51} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{88}{51}x+\frac{1936}{2601}=-\frac{536}{51}+\frac{1936}{2601}
Square -\frac{44}{51} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{88}{51}x+\frac{1936}{2601}=-\frac{25400}{2601}
Add -\frac{536}{51} to \frac{1936}{2601} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{44}{51}\right)^{2}=-\frac{25400}{2601}
Factor x^{2}-\frac{88}{51}x+\frac{1936}{2601}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{44}{51}\right)^{2}}=\sqrt{-\frac{25400}{2601}}
Take the square root of both sides of the equation.
x-\frac{44}{51}=\frac{10\sqrt{254}i}{51} x-\frac{44}{51}=-\frac{10\sqrt{254}i}{51}
Simplify.
x=\frac{44+10\sqrt{254}i}{51} x=\frac{-10\sqrt{254}i+44}{51}
Add \frac{44}{51} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}