Solve for x
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
Graph
Share
Copied to clipboard
-2x^{2}+6=0
Swap sides so that all variable terms are on the left hand side.
-2x^{2}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-6}{-2}
Divide both sides by -2.
x^{2}=3
Divide -6 by -2 to get 3.
x=\sqrt{3} x=-\sqrt{3}
Take the square root of both sides of the equation.
-2x^{2}+6=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 6}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\times 6}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{48}}{2\left(-2\right)}
Multiply 8 times 6.
x=\frac{0±4\sqrt{3}}{2\left(-2\right)}
Take the square root of 48.
x=\frac{0±4\sqrt{3}}{-4}
Multiply 2 times -2.
x=-\sqrt{3}
Now solve the equation x=\frac{0±4\sqrt{3}}{-4} when ± is plus.
x=\sqrt{3}
Now solve the equation x=\frac{0±4\sqrt{3}}{-4} when ± is minus.
x=-\sqrt{3} x=\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}