Solve for t
t=-1
t=6
Share
Copied to clipboard
-16t^{2}+80t+96=0
Swap sides so that all variable terms are on the left hand side.
-t^{2}+5t+6=0
Divide both sides by 16.
a+b=5 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -t^{2}+at+bt+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=6 b=-1
The solution is the pair that gives sum 5.
\left(-t^{2}+6t\right)+\left(-t+6\right)
Rewrite -t^{2}+5t+6 as \left(-t^{2}+6t\right)+\left(-t+6\right).
-t\left(t-6\right)-\left(t-6\right)
Factor out -t in the first and -1 in the second group.
\left(t-6\right)\left(-t-1\right)
Factor out common term t-6 by using distributive property.
t=6 t=-1
To find equation solutions, solve t-6=0 and -t-1=0.
-16t^{2}+80t+96=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-80±\sqrt{80^{2}-4\left(-16\right)\times 96}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 80 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-80±\sqrt{6400-4\left(-16\right)\times 96}}{2\left(-16\right)}
Square 80.
t=\frac{-80±\sqrt{6400+64\times 96}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-80±\sqrt{6400+6144}}{2\left(-16\right)}
Multiply 64 times 96.
t=\frac{-80±\sqrt{12544}}{2\left(-16\right)}
Add 6400 to 6144.
t=\frac{-80±112}{2\left(-16\right)}
Take the square root of 12544.
t=\frac{-80±112}{-32}
Multiply 2 times -16.
t=\frac{32}{-32}
Now solve the equation t=\frac{-80±112}{-32} when ± is plus. Add -80 to 112.
t=-1
Divide 32 by -32.
t=-\frac{192}{-32}
Now solve the equation t=\frac{-80±112}{-32} when ± is minus. Subtract 112 from -80.
t=6
Divide -192 by -32.
t=-1 t=6
The equation is now solved.
-16t^{2}+80t+96=0
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+80t=-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
\frac{-16t^{2}+80t}{-16}=-\frac{96}{-16}
Divide both sides by -16.
t^{2}+\frac{80}{-16}t=-\frac{96}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-5t=-\frac{96}{-16}
Divide 80 by -16.
t^{2}-5t=6
Divide -96 by -16.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-5t+\frac{25}{4}=6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-5t+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(t-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor t^{2}-5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
t-\frac{5}{2}=\frac{7}{2} t-\frac{5}{2}=-\frac{7}{2}
Simplify.
t=6 t=-1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}