Solve for t
t = \frac{5 \sqrt{145} + 5}{8} \approx 8.150996612
t=\frac{5-5\sqrt{145}}{8}\approx -6.900996612
Share
Copied to clipboard
-16t^{2}+20t+900=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-20±\sqrt{20^{2}-4\left(-16\right)\times 900}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 20 for b, and 900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-16\right)\times 900}}{2\left(-16\right)}
Square 20.
t=\frac{-20±\sqrt{400+64\times 900}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-20±\sqrt{400+57600}}{2\left(-16\right)}
Multiply 64 times 900.
t=\frac{-20±\sqrt{58000}}{2\left(-16\right)}
Add 400 to 57600.
t=\frac{-20±20\sqrt{145}}{2\left(-16\right)}
Take the square root of 58000.
t=\frac{-20±20\sqrt{145}}{-32}
Multiply 2 times -16.
t=\frac{20\sqrt{145}-20}{-32}
Now solve the equation t=\frac{-20±20\sqrt{145}}{-32} when ± is plus. Add -20 to 20\sqrt{145}.
t=\frac{5-5\sqrt{145}}{8}
Divide -20+20\sqrt{145} by -32.
t=\frac{-20\sqrt{145}-20}{-32}
Now solve the equation t=\frac{-20±20\sqrt{145}}{-32} when ± is minus. Subtract 20\sqrt{145} from -20.
t=\frac{5\sqrt{145}+5}{8}
Divide -20-20\sqrt{145} by -32.
t=\frac{5-5\sqrt{145}}{8} t=\frac{5\sqrt{145}+5}{8}
The equation is now solved.
-16t^{2}+20t+900=0
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+20t=-900
Subtract 900 from both sides. Anything subtracted from zero gives its negation.
\frac{-16t^{2}+20t}{-16}=-\frac{900}{-16}
Divide both sides by -16.
t^{2}+\frac{20}{-16}t=-\frac{900}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{5}{4}t=-\frac{900}{-16}
Reduce the fraction \frac{20}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{5}{4}t=\frac{225}{4}
Reduce the fraction \frac{-900}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{5}{4}t+\left(-\frac{5}{8}\right)^{2}=\frac{225}{4}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5}{4}t+\frac{25}{64}=\frac{225}{4}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{5}{4}t+\frac{25}{64}=\frac{3625}{64}
Add \frac{225}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{8}\right)^{2}=\frac{3625}{64}
Factor t^{2}-\frac{5}{4}t+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{8}\right)^{2}}=\sqrt{\frac{3625}{64}}
Take the square root of both sides of the equation.
t-\frac{5}{8}=\frac{5\sqrt{145}}{8} t-\frac{5}{8}=-\frac{5\sqrt{145}}{8}
Simplify.
t=\frac{5\sqrt{145}+5}{8} t=\frac{5-5\sqrt{145}}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}