Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
0=-12x-96-20\left(x-3\right)-4
Use the distributive property to multiply -12 by x+8.
0=-12x-96-20x+60-4
Use the distributive property to multiply -20 by x-3.
0=-32x-96+60-4
Combine -12x and -20x to get -32x.
0=-32x-36-4
Add -96 and 60 to get -36.
0=-32x-40
Subtract 4 from -36 to get -40.
-32x-40=0
Swap sides so that all variable terms are on the left hand side.
-32x=40
Add 40 to both sides. Anything plus zero gives itself.
x=\frac{40}{-32}
Divide both sides by -32.
x=-\frac{5}{4}
Reduce the fraction \frac{40}{-32} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}