Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=-\frac{1}{2}\left(x^{2}-x+\frac{1}{4}\right)+\frac{25}{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
0=-\frac{1}{2}x^{2}+\frac{1}{2}x-\frac{1}{8}+\frac{25}{8}
Use the distributive property to multiply -\frac{1}{2} by x^{2}-x+\frac{1}{4}.
0=-\frac{1}{2}x^{2}+\frac{1}{2}x+3
Add -\frac{1}{8} and \frac{25}{8} to get 3.
-\frac{1}{2}x^{2}+\frac{1}{2}x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{2}\right)\times 3}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{1}{2} for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-\frac{1}{2}\right)\times 3}}{2\left(-\frac{1}{2}\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+2\times 3}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+6}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 3.
x=\frac{-\frac{1}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{1}{4} to 6.
x=\frac{-\frac{1}{2}±\frac{5}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{25}{4}.
x=\frac{-\frac{1}{2}±\frac{5}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{2}{-1}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{5}{2}}{-1} when ± is plus. Add -\frac{1}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide 2 by -1.
x=-\frac{3}{-1}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{5}{2}}{-1} when ± is minus. Subtract \frac{5}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide -3 by -1.
x=-2 x=3
The equation is now solved.
0=-\frac{1}{2}\left(x^{2}-x+\frac{1}{4}\right)+\frac{25}{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
0=-\frac{1}{2}x^{2}+\frac{1}{2}x-\frac{1}{8}+\frac{25}{8}
Use the distributive property to multiply -\frac{1}{2} by x^{2}-x+\frac{1}{4}.
0=-\frac{1}{2}x^{2}+\frac{1}{2}x+3
Add -\frac{1}{8} and \frac{25}{8} to get 3.
-\frac{1}{2}x^{2}+\frac{1}{2}x+3=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}x^{2}+\frac{1}{2}x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{1}{2}x^{2}+\frac{1}{2}x}{-\frac{1}{2}}=-\frac{3}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{1}{2}}{-\frac{1}{2}}x=-\frac{3}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-x=-\frac{3}{-\frac{1}{2}}
Divide \frac{1}{2} by -\frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-x=6
Divide -3 by -\frac{1}{2} by multiplying -3 by the reciprocal of -\frac{1}{2}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simplify.
x=3 x=-2
Add \frac{1}{2} to both sides of the equation.