0 = ( x - t ) \cdot ( e ^ { 0,2 x } - 1 )
Solve for t
\left\{\begin{matrix}\\t=x\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x=0
x=t
Graph
Share
Copied to clipboard
0=xe^{0,2x}-x-te^{0,2x}+t
Use the distributive property to multiply x-t by e^{0,2x}-1.
xe^{0,2x}-x-te^{0,2x}+t=0
Swap sides so that all variable terms are on the left hand side.
-x-te^{0,2x}+t=-xe^{0,2x}
Subtract xe^{0,2x} from both sides. Anything subtracted from zero gives its negation.
-te^{0,2x}+t=-xe^{0,2x}+x
Add x to both sides.
\left(-e^{0,2x}+1\right)t=-xe^{0,2x}+x
Combine all terms containing t.
\left(1-e^{\frac{x}{5}}\right)t=x-xe^{\frac{x}{5}}
The equation is in standard form.
\frac{\left(1-e^{\frac{x}{5}}\right)t}{1-e^{\frac{x}{5}}}=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
Divide both sides by -e^{0,2x}+1.
t=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
Dividing by -e^{0,2x}+1 undoes the multiplication by -e^{0,2x}+1.
t=x
Divide -xe^{\frac{x}{5}}+x by -e^{0,2x}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}