Solve for x (complex solution)
x=\frac{29+\sqrt{119}i}{8}\approx 3.625+1.363589014i
x=\frac{-\sqrt{119}i+29}{8}\approx 3.625-1.363589014i
Graph
Share
Copied to clipboard
4x^{2}-29x+60=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 4\times 60}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -29 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 4\times 60}}{2\times 4}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-16\times 60}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-29\right)±\sqrt{841-960}}{2\times 4}
Multiply -16 times 60.
x=\frac{-\left(-29\right)±\sqrt{-119}}{2\times 4}
Add 841 to -960.
x=\frac{-\left(-29\right)±\sqrt{119}i}{2\times 4}
Take the square root of -119.
x=\frac{29±\sqrt{119}i}{2\times 4}
The opposite of -29 is 29.
x=\frac{29±\sqrt{119}i}{8}
Multiply 2 times 4.
x=\frac{29+\sqrt{119}i}{8}
Now solve the equation x=\frac{29±\sqrt{119}i}{8} when ± is plus. Add 29 to i\sqrt{119}.
x=\frac{-\sqrt{119}i+29}{8}
Now solve the equation x=\frac{29±\sqrt{119}i}{8} when ± is minus. Subtract i\sqrt{119} from 29.
x=\frac{29+\sqrt{119}i}{8} x=\frac{-\sqrt{119}i+29}{8}
The equation is now solved.
4x^{2}-29x+60=0
Swap sides so that all variable terms are on the left hand side.
4x^{2}-29x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-29x}{4}=-\frac{60}{4}
Divide both sides by 4.
x^{2}-\frac{29}{4}x=-\frac{60}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{29}{4}x=-15
Divide -60 by 4.
x^{2}-\frac{29}{4}x+\left(-\frac{29}{8}\right)^{2}=-15+\left(-\frac{29}{8}\right)^{2}
Divide -\frac{29}{4}, the coefficient of the x term, by 2 to get -\frac{29}{8}. Then add the square of -\frac{29}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{4}x+\frac{841}{64}=-15+\frac{841}{64}
Square -\frac{29}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{4}x+\frac{841}{64}=-\frac{119}{64}
Add -15 to \frac{841}{64}.
\left(x-\frac{29}{8}\right)^{2}=-\frac{119}{64}
Factor x^{2}-\frac{29}{4}x+\frac{841}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{8}\right)^{2}}=\sqrt{-\frac{119}{64}}
Take the square root of both sides of the equation.
x-\frac{29}{8}=\frac{\sqrt{119}i}{8} x-\frac{29}{8}=-\frac{\sqrt{119}i}{8}
Simplify.
x=\frac{29+\sqrt{119}i}{8} x=\frac{-\sqrt{119}i+29}{8}
Add \frac{29}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}