0 = \frac { 9 } { I } - \frac { } { x z \frac { z } { 1 } }
Solve for I
I=9xz^{2}
x\neq 0\text{ and }z\neq 0
Solve for x
x=\frac{I}{9z^{2}}
z\neq 0\text{ and }I\neq 0
Share
Copied to clipboard
0=9-Ix^{-1}z^{-2}
Variable I cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by I.
9-Ix^{-1}z^{-2}=0
Swap sides so that all variable terms are on the left hand side.
-Ix^{-1}z^{-2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
-z^{-2}\times \frac{1}{x}I=-9
Reorder the terms.
z^{-2}\times \frac{1}{x}I=\frac{-9}{-1}
Divide both sides by -1.
z^{-2}\times \frac{1}{x}I=9
Fraction \frac{-9}{-1} can be simplified to 9 by removing the negative sign from both the numerator and the denominator.
z^{-2}\times 1I=9x
Multiply both sides of the equation by x.
z^{-2}I=9x
Reorder the terms.
\frac{1}{z^{2}}I=9x
The equation is in standard form.
\frac{\frac{1}{z^{2}}Iz^{2}}{1}=\frac{9xz^{2}}{1}
Divide both sides by z^{-2}.
I=\frac{9xz^{2}}{1}
Dividing by z^{-2} undoes the multiplication by z^{-2}.
I=9xz^{2}
Divide 9x by z^{-2}.
I=9xz^{2}\text{, }I\neq 0
Variable I cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}