Solve for H
H=-\frac{H_{125}}{1250}-\frac{251041}{125}
Solve for H_125
H_{125}=-1250H-2510410
Quiz
Linear Equation
5 problems similar to:
0 = \frac { 2 } { 2 } H 125 + 10 ( 125 H - 9375 + 260416 )
Share
Copied to clipboard
0=1H_{125}+10\left(125H-9375+260416\right)
Divide 2 by 2 to get 1.
0=1H_{125}+10\left(125H+251041\right)
Add -9375 and 260416 to get 251041.
0=1H_{125}+1250H+2510410
Use the distributive property to multiply 10 by 125H+251041.
1H_{125}+1250H+2510410=0
Swap sides so that all variable terms are on the left hand side.
1250H+2510410=-H_{125}
Subtract 1H_{125} from both sides. Anything subtracted from zero gives its negation.
1250H=-H_{125}-2510410
Subtract 2510410 from both sides.
\frac{1250H}{1250}=\frac{-H_{125}-2510410}{1250}
Divide both sides by 1250.
H=\frac{-H_{125}-2510410}{1250}
Dividing by 1250 undoes the multiplication by 1250.
H=-\frac{H_{125}}{1250}-\frac{251041}{125}
Divide -H_{125}-2510410 by 1250.
0=1H_{125}+10\left(125H-9375+260416\right)
Divide 2 by 2 to get 1.
0=1H_{125}+10\left(125H+251041\right)
Add -9375 and 260416 to get 251041.
0=1H_{125}+1250H+2510410
Use the distributive property to multiply 10 by 125H+251041.
1H_{125}+1250H+2510410=0
Swap sides so that all variable terms are on the left hand side.
1H_{125}+2510410=-1250H
Subtract 1250H from both sides. Anything subtracted from zero gives its negation.
1H_{125}=-1250H-2510410
Subtract 2510410 from both sides.
H_{125}=-1250H-2510410
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}