Solve for H
H=-\frac{H_{125}}{125}+5.416672
Solve for H_125
H_{125}=677.084-125H
Quiz
Linear Equation
5 problems similar to:
0 = \frac { 2 } { 2 } H 125 + 10 ( 12.5 H - 93.75 + 26.0416 )
Share
Copied to clipboard
0=1H_{125}+10\left(12.5H-93.75+26.0416\right)
Divide 2 by 2 to get 1.
0=1H_{125}+10\left(12.5H-67.7084\right)
Add -93.75 and 26.0416 to get -67.7084.
0=1H_{125}+125H-677.084
Use the distributive property to multiply 10 by 12.5H-67.7084.
1H_{125}+125H-677.084=0
Swap sides so that all variable terms are on the left hand side.
125H-677.084=-H_{125}
Subtract 1H_{125} from both sides. Anything subtracted from zero gives its negation.
125H=-H_{125}+677.084
Add 677.084 to both sides.
125H=677.084-H_{125}
The equation is in standard form.
\frac{125H}{125}=\frac{677.084-H_{125}}{125}
Divide both sides by 125.
H=\frac{677.084-H_{125}}{125}
Dividing by 125 undoes the multiplication by 125.
H=-\frac{H_{125}}{125}+\frac{169271}{31250}
Divide -H_{125}+677.084 by 125.
0=1H_{125}+10\left(12.5H-93.75+26.0416\right)
Divide 2 by 2 to get 1.
0=1H_{125}+10\left(12.5H-67.7084\right)
Add -93.75 and 26.0416 to get -67.7084.
0=1H_{125}+125H-677.084
Use the distributive property to multiply 10 by 12.5H-67.7084.
1H_{125}+125H-677.084=0
Swap sides so that all variable terms are on the left hand side.
1H_{125}-677.084=-125H
Subtract 125H from both sides. Anything subtracted from zero gives its negation.
1H_{125}=-125H+677.084
Add 677.084 to both sides.
H_{125}=-125H+677.084
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}