Solve for x
x = \frac{146}{11} = 13\frac{3}{11} \approx 13.272727273
Graph
Share
Copied to clipboard
0=\frac{11}{12}x+\frac{11}{12}\left(-11\right)-\frac{25}{12}
Use the distributive property to multiply \frac{11}{12} by x-11.
0=\frac{11}{12}x+\frac{11\left(-11\right)}{12}-\frac{25}{12}
Express \frac{11}{12}\left(-11\right) as a single fraction.
0=\frac{11}{12}x+\frac{-121}{12}-\frac{25}{12}
Multiply 11 and -11 to get -121.
0=\frac{11}{12}x-\frac{121}{12}-\frac{25}{12}
Fraction \frac{-121}{12} can be rewritten as -\frac{121}{12} by extracting the negative sign.
0=\frac{11}{12}x+\frac{-121-25}{12}
Since -\frac{121}{12} and \frac{25}{12} have the same denominator, subtract them by subtracting their numerators.
0=\frac{11}{12}x+\frac{-146}{12}
Subtract 25 from -121 to get -146.
0=\frac{11}{12}x-\frac{73}{6}
Reduce the fraction \frac{-146}{12} to lowest terms by extracting and canceling out 2.
\frac{11}{12}x-\frac{73}{6}=0
Swap sides so that all variable terms are on the left hand side.
\frac{11}{12}x=\frac{73}{6}
Add \frac{73}{6} to both sides. Anything plus zero gives itself.
x=\frac{73}{6}\times \frac{12}{11}
Multiply both sides by \frac{12}{11}, the reciprocal of \frac{11}{12}.
x=\frac{73\times 12}{6\times 11}
Multiply \frac{73}{6} times \frac{12}{11} by multiplying numerator times numerator and denominator times denominator.
x=\frac{876}{66}
Do the multiplications in the fraction \frac{73\times 12}{6\times 11}.
x=\frac{146}{11}
Reduce the fraction \frac{876}{66} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}