Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-7x+\frac{45}{2}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times \frac{1}{2}\times \frac{45}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -7 for b, and \frac{45}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times \frac{1}{2}\times \frac{45}{2}}}{2\times \frac{1}{2}}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-2\times \frac{45}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-7\right)±\sqrt{49-45}}{2\times \frac{1}{2}}
Multiply -2 times \frac{45}{2}.
x=\frac{-\left(-7\right)±\sqrt{4}}{2\times \frac{1}{2}}
Add 49 to -45.
x=\frac{-\left(-7\right)±2}{2\times \frac{1}{2}}
Take the square root of 4.
x=\frac{7±2}{2\times \frac{1}{2}}
The opposite of -7 is 7.
x=\frac{7±2}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{9}{1}
Now solve the equation x=\frac{7±2}{1} when ± is plus. Add 7 to 2.
x=9
Divide 9 by 1.
x=\frac{5}{1}
Now solve the equation x=\frac{7±2}{1} when ± is minus. Subtract 2 from 7.
x=5
Divide 5 by 1.
x=9 x=5
The equation is now solved.
\frac{1}{2}x^{2}-7x+\frac{45}{2}=0
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-7x=-\frac{45}{2}
Subtract \frac{45}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{2}x^{2}-7x}{\frac{1}{2}}=-\frac{\frac{45}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{7}{\frac{1}{2}}\right)x=-\frac{\frac{45}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-14x=-\frac{\frac{45}{2}}{\frac{1}{2}}
Divide -7 by \frac{1}{2} by multiplying -7 by the reciprocal of \frac{1}{2}.
x^{2}-14x=-45
Divide -\frac{45}{2} by \frac{1}{2} by multiplying -\frac{45}{2} by the reciprocal of \frac{1}{2}.
x^{2}-14x+\left(-7\right)^{2}=-45+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-45+49
Square -7.
x^{2}-14x+49=4
Add -45 to 49.
\left(x-7\right)^{2}=4
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-7=2 x-7=-2
Simplify.
x=9 x=5
Add 7 to both sides of the equation.