Solve for x
x=5
x=9
Graph
Quiz
Quadratic Equation
5 problems similar to:
0 = \frac { 1 } { 2 } x ^ { 2 } - 7 x + \frac { 45 } { 2 }
Share
Copied to clipboard
\frac{1}{2}x^{2}-7x+\frac{45}{2}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times \frac{1}{2}\times \frac{45}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -7 for b, and \frac{45}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times \frac{1}{2}\times \frac{45}{2}}}{2\times \frac{1}{2}}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-2\times \frac{45}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-7\right)±\sqrt{49-45}}{2\times \frac{1}{2}}
Multiply -2 times \frac{45}{2}.
x=\frac{-\left(-7\right)±\sqrt{4}}{2\times \frac{1}{2}}
Add 49 to -45.
x=\frac{-\left(-7\right)±2}{2\times \frac{1}{2}}
Take the square root of 4.
x=\frac{7±2}{2\times \frac{1}{2}}
The opposite of -7 is 7.
x=\frac{7±2}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{9}{1}
Now solve the equation x=\frac{7±2}{1} when ± is plus. Add 7 to 2.
x=9
Divide 9 by 1.
x=\frac{5}{1}
Now solve the equation x=\frac{7±2}{1} when ± is minus. Subtract 2 from 7.
x=5
Divide 5 by 1.
x=9 x=5
The equation is now solved.
\frac{1}{2}x^{2}-7x+\frac{45}{2}=0
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-7x=-\frac{45}{2}
Subtract \frac{45}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{2}x^{2}-7x}{\frac{1}{2}}=-\frac{\frac{45}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{7}{\frac{1}{2}}\right)x=-\frac{\frac{45}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-14x=-\frac{\frac{45}{2}}{\frac{1}{2}}
Divide -7 by \frac{1}{2} by multiplying -7 by the reciprocal of \frac{1}{2}.
x^{2}-14x=-45
Divide -\frac{45}{2} by \frac{1}{2} by multiplying -\frac{45}{2} by the reciprocal of \frac{1}{2}.
x^{2}-14x+\left(-7\right)^{2}=-45+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-45+49
Square -7.
x^{2}-14x+49=4
Add -45 to 49.
\left(x-7\right)^{2}=4
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-7=2 x-7=-2
Simplify.
x=9 x=5
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}