Solve for x_0
x_{0}=2
Share
Copied to clipboard
-\sqrt{x_{0}-1}=\frac{1}{2\sqrt{x_{0}-1}}\left(-1\right)x_{0}
Subtract \sqrt{x_{0}-1} from both sides of the equation.
-\sqrt{x_{0}-1}=\frac{x_{0}}{2\sqrt{x_{0}-1}}\left(-1\right)
Express \frac{1}{2\sqrt{x_{0}-1}}x_{0} as a single fraction.
\sqrt{x_{0}-1}=\frac{x_{0}}{2\sqrt{x_{0}-1}}
Cancel out -1 on both sides.
\left(\sqrt{x_{0}-1}\right)^{2}=\left(\frac{x_{0}}{2\sqrt{x_{0}-1}}\right)^{2}
Square both sides of the equation.
x_{0}-1=\left(\frac{x_{0}}{2\sqrt{x_{0}-1}}\right)^{2}
Calculate \sqrt{x_{0}-1} to the power of 2 and get x_{0}-1.
x_{0}-1=\frac{x_{0}^{2}}{\left(2\sqrt{x_{0}-1}\right)^{2}}
To raise \frac{x_{0}}{2\sqrt{x_{0}-1}} to a power, raise both numerator and denominator to the power and then divide.
x_{0}-1=\frac{x_{0}^{2}}{2^{2}\left(\sqrt{x_{0}-1}\right)^{2}}
Expand \left(2\sqrt{x_{0}-1}\right)^{2}.
x_{0}-1=\frac{x_{0}^{2}}{4\left(\sqrt{x_{0}-1}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
x_{0}-1=\frac{x_{0}^{2}}{4\left(x_{0}-1\right)}
Calculate \sqrt{x_{0}-1} to the power of 2 and get x_{0}-1.
4\left(x_{0}-1\right)x_{0}+4\left(x_{0}-1\right)\left(-1\right)=x_{0}^{2}
Multiply both sides of the equation by 4\left(x_{0}-1\right).
4x_{0}\left(x_{0}-1\right)-4\left(x_{0}-1\right)=x_{0}^{2}
Reorder the terms.
4x_{0}^{2}-4x_{0}-4\left(x_{0}-1\right)=x_{0}^{2}
Use the distributive property to multiply 4x_{0} by x_{0}-1.
4x_{0}^{2}-4x_{0}-4x_{0}+4=x_{0}^{2}
Use the distributive property to multiply -4 by x_{0}-1.
4x_{0}^{2}-8x_{0}+4=x_{0}^{2}
Combine -4x_{0} and -4x_{0} to get -8x_{0}.
4x_{0}^{2}-8x_{0}+4-x_{0}^{2}=0
Subtract x_{0}^{2} from both sides.
3x_{0}^{2}-8x_{0}+4=0
Combine 4x_{0}^{2} and -x_{0}^{2} to get 3x_{0}^{2}.
a+b=-8 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x_{0}^{2}+ax_{0}+bx_{0}+4. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(3x_{0}^{2}-6x_{0}\right)+\left(-2x_{0}+4\right)
Rewrite 3x_{0}^{2}-8x_{0}+4 as \left(3x_{0}^{2}-6x_{0}\right)+\left(-2x_{0}+4\right).
3x_{0}\left(x_{0}-2\right)-2\left(x_{0}-2\right)
Factor out 3x_{0} in the first and -2 in the second group.
\left(x_{0}-2\right)\left(3x_{0}-2\right)
Factor out common term x_{0}-2 by using distributive property.
x_{0}=2 x_{0}=\frac{2}{3}
To find equation solutions, solve x_{0}-2=0 and 3x_{0}-2=0.
0=\frac{1}{2\sqrt{2-1}}\left(0-2\right)+\sqrt{2-1}
Substitute 2 for x_{0} in the equation 0=\frac{1}{2\sqrt{x_{0}-1}}\left(0-x_{0}\right)+\sqrt{x_{0}-1}.
0=0
Simplify. The value x_{0}=2 satisfies the equation.
0=\frac{1}{2\sqrt{\frac{2}{3}-1}}\left(0-\frac{2}{3}\right)+\sqrt{\frac{2}{3}-1}
Substitute \frac{2}{3} for x_{0} in the equation 0=\frac{1}{2\sqrt{x_{0}-1}}\left(0-x_{0}\right)+\sqrt{x_{0}-1}. The expression \sqrt{\frac{2}{3}-1} is undefined because the radicand cannot be negative.
x_{0}=2
Equation \sqrt{x_{0}-1}=\frac{x_{0}}{2\sqrt{x_{0}-1}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}