Solve for n
n = \frac{3 \sqrt{1409} - 9}{10} \approx 10.360994627
n=\frac{-3\sqrt{1409}-9}{10}\approx -12.160994627
Share
Copied to clipboard
5n^{2}+9n-630=0
Swap sides so that all variable terms are on the left hand side.
n=\frac{-9±\sqrt{9^{2}-4\times 5\left(-630\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 9 for b, and -630 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-9±\sqrt{81-4\times 5\left(-630\right)}}{2\times 5}
Square 9.
n=\frac{-9±\sqrt{81-20\left(-630\right)}}{2\times 5}
Multiply -4 times 5.
n=\frac{-9±\sqrt{81+12600}}{2\times 5}
Multiply -20 times -630.
n=\frac{-9±\sqrt{12681}}{2\times 5}
Add 81 to 12600.
n=\frac{-9±3\sqrt{1409}}{2\times 5}
Take the square root of 12681.
n=\frac{-9±3\sqrt{1409}}{10}
Multiply 2 times 5.
n=\frac{3\sqrt{1409}-9}{10}
Now solve the equation n=\frac{-9±3\sqrt{1409}}{10} when ± is plus. Add -9 to 3\sqrt{1409}.
n=\frac{-3\sqrt{1409}-9}{10}
Now solve the equation n=\frac{-9±3\sqrt{1409}}{10} when ± is minus. Subtract 3\sqrt{1409} from -9.
n=\frac{3\sqrt{1409}-9}{10} n=\frac{-3\sqrt{1409}-9}{10}
The equation is now solved.
5n^{2}+9n-630=0
Swap sides so that all variable terms are on the left hand side.
5n^{2}+9n=630
Add 630 to both sides. Anything plus zero gives itself.
\frac{5n^{2}+9n}{5}=\frac{630}{5}
Divide both sides by 5.
n^{2}+\frac{9}{5}n=\frac{630}{5}
Dividing by 5 undoes the multiplication by 5.
n^{2}+\frac{9}{5}n=126
Divide 630 by 5.
n^{2}+\frac{9}{5}n+\left(\frac{9}{10}\right)^{2}=126+\left(\frac{9}{10}\right)^{2}
Divide \frac{9}{5}, the coefficient of the x term, by 2 to get \frac{9}{10}. Then add the square of \frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{9}{5}n+\frac{81}{100}=126+\frac{81}{100}
Square \frac{9}{10} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{9}{5}n+\frac{81}{100}=\frac{12681}{100}
Add 126 to \frac{81}{100}.
\left(n+\frac{9}{10}\right)^{2}=\frac{12681}{100}
Factor n^{2}+\frac{9}{5}n+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{9}{10}\right)^{2}}=\sqrt{\frac{12681}{100}}
Take the square root of both sides of the equation.
n+\frac{9}{10}=\frac{3\sqrt{1409}}{10} n+\frac{9}{10}=-\frac{3\sqrt{1409}}{10}
Simplify.
n=\frac{3\sqrt{1409}-9}{10} n=\frac{-3\sqrt{1409}-9}{10}
Subtract \frac{9}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}