Solve for x (complex solution)
x=3+4\sqrt{6}i\approx 3+9.797958971i
x=-4\sqrt{6}i+3\approx 3-9.797958971i
Graph
Share
Copied to clipboard
35-2x+\frac{1}{3}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}x^{2}-2x+35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{3}\times 35}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -2 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{3}\times 35}}{2\times \frac{1}{3}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-\frac{4}{3}\times 35}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-2\right)±\sqrt{4-\frac{140}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times 35.
x=\frac{-\left(-2\right)±\sqrt{-\frac{128}{3}}}{2\times \frac{1}{3}}
Add 4 to -\frac{140}{3}.
x=\frac{-\left(-2\right)±\frac{8\sqrt{6}i}{3}}{2\times \frac{1}{3}}
Take the square root of -\frac{128}{3}.
x=\frac{2±\frac{8\sqrt{6}i}{3}}{2\times \frac{1}{3}}
The opposite of -2 is 2.
x=\frac{2±\frac{8\sqrt{6}i}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{8\sqrt{6}i}{3}+2}{\frac{2}{3}}
Now solve the equation x=\frac{2±\frac{8\sqrt{6}i}{3}}{\frac{2}{3}} when ± is plus. Add 2 to \frac{8i\sqrt{6}}{3}.
x=3+4\sqrt{6}i
Divide 2+\frac{8i\sqrt{6}}{3} by \frac{2}{3} by multiplying 2+\frac{8i\sqrt{6}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{-\frac{8\sqrt{6}i}{3}+2}{\frac{2}{3}}
Now solve the equation x=\frac{2±\frac{8\sqrt{6}i}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{8i\sqrt{6}}{3} from 2.
x=-4\sqrt{6}i+3
Divide 2-\frac{8i\sqrt{6}}{3} by \frac{2}{3} by multiplying 2-\frac{8i\sqrt{6}}{3} by the reciprocal of \frac{2}{3}.
x=3+4\sqrt{6}i x=-4\sqrt{6}i+3
The equation is now solved.
35-2x+\frac{1}{3}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-2x+\frac{1}{3}x^{2}=-35
Subtract 35 from both sides. Anything subtracted from zero gives its negation.
\frac{1}{3}x^{2}-2x=-35
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}-2x}{\frac{1}{3}}=-\frac{35}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{2}{\frac{1}{3}}\right)x=-\frac{35}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-6x=-\frac{35}{\frac{1}{3}}
Divide -2 by \frac{1}{3} by multiplying -2 by the reciprocal of \frac{1}{3}.
x^{2}-6x=-105
Divide -35 by \frac{1}{3} by multiplying -35 by the reciprocal of \frac{1}{3}.
x^{2}-6x+\left(-3\right)^{2}=-105+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-105+9
Square -3.
x^{2}-6x+9=-96
Add -105 to 9.
\left(x-3\right)^{2}=-96
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-96}
Take the square root of both sides of the equation.
x-3=4\sqrt{6}i x-3=-4\sqrt{6}i
Simplify.
x=3+4\sqrt{6}i x=-4\sqrt{6}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}