Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+3x-90=0
Swap sides so that all variable terms are on the left hand side.
a+b=3 ab=2\left(-90\right)=-180
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-90. To find a and b, set up a system to be solved.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Calculate the sum for each pair.
a=-12 b=15
The solution is the pair that gives sum 3.
\left(2x^{2}-12x\right)+\left(15x-90\right)
Rewrite 2x^{2}+3x-90 as \left(2x^{2}-12x\right)+\left(15x-90\right).
2x\left(x-6\right)+15\left(x-6\right)
Factor out 2x in the first and 15 in the second group.
\left(x-6\right)\left(2x+15\right)
Factor out common term x-6 by using distributive property.
x=6 x=-\frac{15}{2}
To find equation solutions, solve x-6=0 and 2x+15=0.
2x^{2}+3x-90=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-90\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-90\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-90\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+720}}{2\times 2}
Multiply -8 times -90.
x=\frac{-3±\sqrt{729}}{2\times 2}
Add 9 to 720.
x=\frac{-3±27}{2\times 2}
Take the square root of 729.
x=\frac{-3±27}{4}
Multiply 2 times 2.
x=\frac{24}{4}
Now solve the equation x=\frac{-3±27}{4} when ± is plus. Add -3 to 27.
x=6
Divide 24 by 4.
x=-\frac{30}{4}
Now solve the equation x=\frac{-3±27}{4} when ± is minus. Subtract 27 from -3.
x=-\frac{15}{2}
Reduce the fraction \frac{-30}{4} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{15}{2}
The equation is now solved.
2x^{2}+3x-90=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+3x=90
Add 90 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+3x}{2}=\frac{90}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{90}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x=45
Divide 90 by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=45+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=45+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{729}{16}
Add 45 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{729}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{729}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{27}{4} x+\frac{3}{4}=-\frac{27}{4}
Simplify.
x=6 x=-\frac{15}{2}
Subtract \frac{3}{4} from both sides of the equation.