Solve for t
t = \frac{2 \sqrt{151} - 2}{5} \approx 4.515282291
t=\frac{-2\sqrt{151}-2}{5}\approx -5.315282291
Share
Copied to clipboard
-5t^{2}-4t+120=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)\times 120}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -4 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)\times 120}}{2\left(-5\right)}
Square -4.
t=\frac{-\left(-4\right)±\sqrt{16+20\times 120}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-\left(-4\right)±\sqrt{16+2400}}{2\left(-5\right)}
Multiply 20 times 120.
t=\frac{-\left(-4\right)±\sqrt{2416}}{2\left(-5\right)}
Add 16 to 2400.
t=\frac{-\left(-4\right)±4\sqrt{151}}{2\left(-5\right)}
Take the square root of 2416.
t=\frac{4±4\sqrt{151}}{2\left(-5\right)}
The opposite of -4 is 4.
t=\frac{4±4\sqrt{151}}{-10}
Multiply 2 times -5.
t=\frac{4\sqrt{151}+4}{-10}
Now solve the equation t=\frac{4±4\sqrt{151}}{-10} when ± is plus. Add 4 to 4\sqrt{151}.
t=\frac{-2\sqrt{151}-2}{5}
Divide 4+4\sqrt{151} by -10.
t=\frac{4-4\sqrt{151}}{-10}
Now solve the equation t=\frac{4±4\sqrt{151}}{-10} when ± is minus. Subtract 4\sqrt{151} from 4.
t=\frac{2\sqrt{151}-2}{5}
Divide 4-4\sqrt{151} by -10.
t=\frac{-2\sqrt{151}-2}{5} t=\frac{2\sqrt{151}-2}{5}
The equation is now solved.
-5t^{2}-4t+120=0
Swap sides so that all variable terms are on the left hand side.
-5t^{2}-4t=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
\frac{-5t^{2}-4t}{-5}=-\frac{120}{-5}
Divide both sides by -5.
t^{2}+\left(-\frac{4}{-5}\right)t=-\frac{120}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}+\frac{4}{5}t=-\frac{120}{-5}
Divide -4 by -5.
t^{2}+\frac{4}{5}t=24
Divide -120 by -5.
t^{2}+\frac{4}{5}t+\left(\frac{2}{5}\right)^{2}=24+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{4}{5}t+\frac{4}{25}=24+\frac{4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{4}{5}t+\frac{4}{25}=\frac{604}{25}
Add 24 to \frac{4}{25}.
\left(t+\frac{2}{5}\right)^{2}=\frac{604}{25}
Factor t^{2}+\frac{4}{5}t+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{2}{5}\right)^{2}}=\sqrt{\frac{604}{25}}
Take the square root of both sides of the equation.
t+\frac{2}{5}=\frac{2\sqrt{151}}{5} t+\frac{2}{5}=-\frac{2\sqrt{151}}{5}
Simplify.
t=\frac{2\sqrt{151}-2}{5} t=\frac{-2\sqrt{151}-2}{5}
Subtract \frac{2}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}