Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}+67x+2=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-67±\sqrt{67^{2}-4\left(-16\right)\times 2}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 67 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-67±\sqrt{4489-4\left(-16\right)\times 2}}{2\left(-16\right)}
Square 67.
x=\frac{-67±\sqrt{4489+64\times 2}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-67±\sqrt{4489+128}}{2\left(-16\right)}
Multiply 64 times 2.
x=\frac{-67±\sqrt{4617}}{2\left(-16\right)}
Add 4489 to 128.
x=\frac{-67±9\sqrt{57}}{2\left(-16\right)}
Take the square root of 4617.
x=\frac{-67±9\sqrt{57}}{-32}
Multiply 2 times -16.
x=\frac{9\sqrt{57}-67}{-32}
Now solve the equation x=\frac{-67±9\sqrt{57}}{-32} when ± is plus. Add -67 to 9\sqrt{57}.
x=\frac{67-9\sqrt{57}}{32}
Divide -67+9\sqrt{57} by -32.
x=\frac{-9\sqrt{57}-67}{-32}
Now solve the equation x=\frac{-67±9\sqrt{57}}{-32} when ± is minus. Subtract 9\sqrt{57} from -67.
x=\frac{9\sqrt{57}+67}{32}
Divide -67-9\sqrt{57} by -32.
x=\frac{67-9\sqrt{57}}{32} x=\frac{9\sqrt{57}+67}{32}
The equation is now solved.
-16x^{2}+67x+2=0
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+67x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{-16x^{2}+67x}{-16}=-\frac{2}{-16}
Divide both sides by -16.
x^{2}+\frac{67}{-16}x=-\frac{2}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{67}{16}x=-\frac{2}{-16}
Divide 67 by -16.
x^{2}-\frac{67}{16}x=\frac{1}{8}
Reduce the fraction \frac{-2}{-16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{67}{16}x+\left(-\frac{67}{32}\right)^{2}=\frac{1}{8}+\left(-\frac{67}{32}\right)^{2}
Divide -\frac{67}{16}, the coefficient of the x term, by 2 to get -\frac{67}{32}. Then add the square of -\frac{67}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{67}{16}x+\frac{4489}{1024}=\frac{1}{8}+\frac{4489}{1024}
Square -\frac{67}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{67}{16}x+\frac{4489}{1024}=\frac{4617}{1024}
Add \frac{1}{8} to \frac{4489}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{67}{32}\right)^{2}=\frac{4617}{1024}
Factor x^{2}-\frac{67}{16}x+\frac{4489}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{67}{32}\right)^{2}}=\sqrt{\frac{4617}{1024}}
Take the square root of both sides of the equation.
x-\frac{67}{32}=\frac{9\sqrt{57}}{32} x-\frac{67}{32}=-\frac{9\sqrt{57}}{32}
Simplify.
x=\frac{9\sqrt{57}+67}{32} x=\frac{67-9\sqrt{57}}{32}
Add \frac{67}{32} to both sides of the equation.