Solve for x
x=\sqrt{40090}+200\approx 400.22487358
x=200-\sqrt{40090}\approx -0.22487358
Graph
Share
Copied to clipboard
-0.02x^{2}+8x+1.8=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-8±\sqrt{8^{2}-4\left(-0.02\right)\times 1.8}}{2\left(-0.02\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.02 for a, 8 for b, and 1.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-0.02\right)\times 1.8}}{2\left(-0.02\right)}
Square 8.
x=\frac{-8±\sqrt{64+0.08\times 1.8}}{2\left(-0.02\right)}
Multiply -4 times -0.02.
x=\frac{-8±\sqrt{64+0.144}}{2\left(-0.02\right)}
Multiply 0.08 times 1.8 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-8±\sqrt{64.144}}{2\left(-0.02\right)}
Add 64 to 0.144.
x=\frac{-8±\frac{\sqrt{40090}}{25}}{2\left(-0.02\right)}
Take the square root of 64.144.
x=\frac{-8±\frac{\sqrt{40090}}{25}}{-0.04}
Multiply 2 times -0.02.
x=\frac{\frac{\sqrt{40090}}{25}-8}{-0.04}
Now solve the equation x=\frac{-8±\frac{\sqrt{40090}}{25}}{-0.04} when ± is plus. Add -8 to \frac{\sqrt{40090}}{25}.
x=200-\sqrt{40090}
Divide -8+\frac{\sqrt{40090}}{25} by -0.04 by multiplying -8+\frac{\sqrt{40090}}{25} by the reciprocal of -0.04.
x=\frac{-\frac{\sqrt{40090}}{25}-8}{-0.04}
Now solve the equation x=\frac{-8±\frac{\sqrt{40090}}{25}}{-0.04} when ± is minus. Subtract \frac{\sqrt{40090}}{25} from -8.
x=\sqrt{40090}+200
Divide -8-\frac{\sqrt{40090}}{25} by -0.04 by multiplying -8-\frac{\sqrt{40090}}{25} by the reciprocal of -0.04.
x=200-\sqrt{40090} x=\sqrt{40090}+200
The equation is now solved.
-0.02x^{2}+8x+1.8=0
Swap sides so that all variable terms are on the left hand side.
-0.02x^{2}+8x=-1.8
Subtract 1.8 from both sides. Anything subtracted from zero gives its negation.
-0.02x^{2}+8x=-\frac{9}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.02x^{2}+8x}{-0.02}=-\frac{\frac{9}{5}}{-0.02}
Multiply both sides by -50.
x^{2}+\frac{8}{-0.02}x=-\frac{\frac{9}{5}}{-0.02}
Dividing by -0.02 undoes the multiplication by -0.02.
x^{2}-400x=-\frac{\frac{9}{5}}{-0.02}
Divide 8 by -0.02 by multiplying 8 by the reciprocal of -0.02.
x^{2}-400x=90
Divide -\frac{9}{5} by -0.02 by multiplying -\frac{9}{5} by the reciprocal of -0.02.
x^{2}-400x+\left(-200\right)^{2}=90+\left(-200\right)^{2}
Divide -400, the coefficient of the x term, by 2 to get -200. Then add the square of -200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-400x+40000=90+40000
Square -200.
x^{2}-400x+40000=40090
Add 90 to 40000.
\left(x-200\right)^{2}=40090
Factor x^{2}-400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-200\right)^{2}}=\sqrt{40090}
Take the square root of both sides of the equation.
x-200=\sqrt{40090} x-200=-\sqrt{40090}
Simplify.
x=\sqrt{40090}+200 x=200-\sqrt{40090}
Add 200 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}