Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

0=-\frac{1}{5}\left(10.24-6.4n+n^{2}\right)+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3.2-n\right)^{2}.
0=-\frac{256}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}+16
Use the distributive property to multiply -\frac{1}{5} by 10.24-6.4n+n^{2}.
0=\frac{1744}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}
Add -\frac{256}{125} and 16 to get \frac{1744}{125}.
\frac{1744}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}n^{2}+\frac{32}{25}n+\frac{1744}{125}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\frac{32}{25}±\sqrt{\left(\frac{32}{25}\right)^{2}-4\left(-\frac{1}{5}\right)\times \frac{1744}{125}}}{2\left(-\frac{1}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{5} for a, \frac{32}{25} for b, and \frac{1744}{125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\frac{32}{25}±\sqrt{\frac{1024}{625}-4\left(-\frac{1}{5}\right)\times \frac{1744}{125}}}{2\left(-\frac{1}{5}\right)}
Square \frac{32}{25} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\frac{32}{25}±\sqrt{\frac{1024}{625}+\frac{4}{5}\times \frac{1744}{125}}}{2\left(-\frac{1}{5}\right)}
Multiply -4 times -\frac{1}{5}.
n=\frac{-\frac{32}{25}±\sqrt{\frac{1024+6976}{625}}}{2\left(-\frac{1}{5}\right)}
Multiply \frac{4}{5} times \frac{1744}{125} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
n=\frac{-\frac{32}{25}±\sqrt{\frac{64}{5}}}{2\left(-\frac{1}{5}\right)}
Add \frac{1024}{625} to \frac{6976}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-\frac{32}{25}±\frac{8\sqrt{5}}{5}}{2\left(-\frac{1}{5}\right)}
Take the square root of \frac{64}{5}.
n=\frac{-\frac{32}{25}±\frac{8\sqrt{5}}{5}}{-\frac{2}{5}}
Multiply 2 times -\frac{1}{5}.
n=\frac{\frac{8\sqrt{5}}{5}-\frac{32}{25}}{-\frac{2}{5}}
Now solve the equation n=\frac{-\frac{32}{25}±\frac{8\sqrt{5}}{5}}{-\frac{2}{5}} when ± is plus. Add -\frac{32}{25} to \frac{8\sqrt{5}}{5}.
n=\frac{16}{5}-4\sqrt{5}
Divide -\frac{32}{25}+\frac{8\sqrt{5}}{5} by -\frac{2}{5} by multiplying -\frac{32}{25}+\frac{8\sqrt{5}}{5} by the reciprocal of -\frac{2}{5}.
n=\frac{-\frac{8\sqrt{5}}{5}-\frac{32}{25}}{-\frac{2}{5}}
Now solve the equation n=\frac{-\frac{32}{25}±\frac{8\sqrt{5}}{5}}{-\frac{2}{5}} when ± is minus. Subtract \frac{8\sqrt{5}}{5} from -\frac{32}{25}.
n=4\sqrt{5}+\frac{16}{5}
Divide -\frac{32}{25}-\frac{8\sqrt{5}}{5} by -\frac{2}{5} by multiplying -\frac{32}{25}-\frac{8\sqrt{5}}{5} by the reciprocal of -\frac{2}{5}.
n=\frac{16}{5}-4\sqrt{5} n=4\sqrt{5}+\frac{16}{5}
The equation is now solved.
0=-\frac{1}{5}\left(10.24-6.4n+n^{2}\right)+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3.2-n\right)^{2}.
0=-\frac{256}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}+16
Use the distributive property to multiply -\frac{1}{5} by 10.24-6.4n+n^{2}.
0=\frac{1744}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}
Add -\frac{256}{125} and 16 to get \frac{1744}{125}.
\frac{1744}{125}+\frac{32}{25}n-\frac{1}{5}n^{2}=0
Swap sides so that all variable terms are on the left hand side.
\frac{32}{25}n-\frac{1}{5}n^{2}=-\frac{1744}{125}
Subtract \frac{1744}{125} from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{5}n^{2}+\frac{32}{25}n=-\frac{1744}{125}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{5}n^{2}+\frac{32}{25}n}{-\frac{1}{5}}=-\frac{\frac{1744}{125}}{-\frac{1}{5}}
Multiply both sides by -5.
n^{2}+\frac{\frac{32}{25}}{-\frac{1}{5}}n=-\frac{\frac{1744}{125}}{-\frac{1}{5}}
Dividing by -\frac{1}{5} undoes the multiplication by -\frac{1}{5}.
n^{2}-\frac{32}{5}n=-\frac{\frac{1744}{125}}{-\frac{1}{5}}
Divide \frac{32}{25} by -\frac{1}{5} by multiplying \frac{32}{25} by the reciprocal of -\frac{1}{5}.
n^{2}-\frac{32}{5}n=\frac{1744}{25}
Divide -\frac{1744}{125} by -\frac{1}{5} by multiplying -\frac{1744}{125} by the reciprocal of -\frac{1}{5}.
n^{2}-\frac{32}{5}n+\left(-\frac{16}{5}\right)^{2}=\frac{1744}{25}+\left(-\frac{16}{5}\right)^{2}
Divide -\frac{32}{5}, the coefficient of the x term, by 2 to get -\frac{16}{5}. Then add the square of -\frac{16}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{32}{5}n+\frac{256}{25}=\frac{1744+256}{25}
Square -\frac{16}{5} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{32}{5}n+\frac{256}{25}=80
Add \frac{1744}{25} to \frac{256}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{16}{5}\right)^{2}=80
Factor n^{2}-\frac{32}{5}n+\frac{256}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{16}{5}\right)^{2}}=\sqrt{80}
Take the square root of both sides of the equation.
n-\frac{16}{5}=4\sqrt{5} n-\frac{16}{5}=-4\sqrt{5}
Simplify.
n=4\sqrt{5}+\frac{16}{5} n=\frac{16}{5}-4\sqrt{5}
Add \frac{16}{5} to both sides of the equation.