Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-16x-126=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-126\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and -126 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-126\right)}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+504}}{2}
Multiply -4 times -126.
x=\frac{-\left(-16\right)±\sqrt{760}}{2}
Add 256 to 504.
x=\frac{-\left(-16\right)±2\sqrt{190}}{2}
Take the square root of 760.
x=\frac{16±2\sqrt{190}}{2}
The opposite of -16 is 16.
x=\frac{2\sqrt{190}+16}{2}
Now solve the equation x=\frac{16±2\sqrt{190}}{2} when ± is plus. Add 16 to 2\sqrt{190}.
x=\sqrt{190}+8
Divide 16+2\sqrt{190} by 2.
x=\frac{16-2\sqrt{190}}{2}
Now solve the equation x=\frac{16±2\sqrt{190}}{2} when ± is minus. Subtract 2\sqrt{190} from 16.
x=8-\sqrt{190}
Divide 16-2\sqrt{190} by 2.
x=\sqrt{190}+8 x=8-\sqrt{190}
The equation is now solved.
x^{2}-16x-126=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-16x=126
Add 126 to both sides. Anything plus zero gives itself.
x^{2}-16x+\left(-8\right)^{2}=126+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=126+64
Square -8.
x^{2}-16x+64=190
Add 126 to 64.
\left(x-8\right)^{2}=190
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{190}
Take the square root of both sides of the equation.
x-8=\sqrt{190} x-8=-\sqrt{190}
Simplify.
x=\sqrt{190}+8 x=8-\sqrt{190}
Add 8 to both sides of the equation.