Solve for t
t=52
t = -\frac{56}{3} = -18\frac{2}{3} \approx -18.666666667
Share
Copied to clipboard
0=\left(\frac{3}{4}t+14\right)\left(-t+52\right)
Subtract 20 from 34 to get 14.
0=\frac{3}{4}t\left(-t\right)+\frac{3}{4}t\times 52+14\left(-t\right)+728
Apply the distributive property by multiplying each term of \frac{3}{4}t+14 by each term of -t+52.
0=\frac{3}{4}t\left(-t\right)+\frac{3\times 52}{4}t+14\left(-t\right)+728
Express \frac{3}{4}\times 52 as a single fraction.
0=\frac{3}{4}t\left(-t\right)+\frac{156}{4}t+14\left(-t\right)+728
Multiply 3 and 52 to get 156.
0=\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728
Divide 156 by 4 to get 39.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728=0
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{4}tt+39t+14\left(-1\right)t+728=0
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
-\frac{3}{4}t^{2}+39t+14\left(-1\right)t+728=0
Multiply t and t to get t^{2}.
-\frac{3}{4}t^{2}+39t-14t+728=0
Multiply 14 and -1 to get -14.
-\frac{3}{4}t^{2}+25t+728=0
Combine 39t and -14t to get 25t.
t=\frac{-25±\sqrt{25^{2}-4\left(-\frac{3}{4}\right)\times 728}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, 25 for b, and 728 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-25±\sqrt{625-4\left(-\frac{3}{4}\right)\times 728}}{2\left(-\frac{3}{4}\right)}
Square 25.
t=\frac{-25±\sqrt{625+3\times 728}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
t=\frac{-25±\sqrt{625+2184}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times 728.
t=\frac{-25±\sqrt{2809}}{2\left(-\frac{3}{4}\right)}
Add 625 to 2184.
t=\frac{-25±53}{2\left(-\frac{3}{4}\right)}
Take the square root of 2809.
t=\frac{-25±53}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
t=\frac{28}{-\frac{3}{2}}
Now solve the equation t=\frac{-25±53}{-\frac{3}{2}} when ± is plus. Add -25 to 53.
t=-\frac{56}{3}
Divide 28 by -\frac{3}{2} by multiplying 28 by the reciprocal of -\frac{3}{2}.
t=-\frac{78}{-\frac{3}{2}}
Now solve the equation t=\frac{-25±53}{-\frac{3}{2}} when ± is minus. Subtract 53 from -25.
t=52
Divide -78 by -\frac{3}{2} by multiplying -78 by the reciprocal of -\frac{3}{2}.
t=-\frac{56}{3} t=52
The equation is now solved.
0=\left(\frac{3}{4}t+14\right)\left(-t+52\right)
Subtract 20 from 34 to get 14.
0=\frac{3}{4}t\left(-t\right)+\frac{3}{4}t\times 52+14\left(-t\right)+728
Apply the distributive property by multiplying each term of \frac{3}{4}t+14 by each term of -t+52.
0=\frac{3}{4}t\left(-t\right)+\frac{3\times 52}{4}t+14\left(-t\right)+728
Express \frac{3}{4}\times 52 as a single fraction.
0=\frac{3}{4}t\left(-t\right)+\frac{156}{4}t+14\left(-t\right)+728
Multiply 3 and 52 to get 156.
0=\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728
Divide 156 by 4 to get 39.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728=0
Swap sides so that all variable terms are on the left hand side.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)=-728
Subtract 728 from both sides. Anything subtracted from zero gives its negation.
-\frac{3}{4}tt+39t+14\left(-1\right)t=-728
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
-\frac{3}{4}t^{2}+39t+14\left(-1\right)t=-728
Multiply t and t to get t^{2}.
-\frac{3}{4}t^{2}+39t-14t=-728
Multiply 14 and -1 to get -14.
-\frac{3}{4}t^{2}+25t=-728
Combine 39t and -14t to get 25t.
\frac{-\frac{3}{4}t^{2}+25t}{-\frac{3}{4}}=-\frac{728}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{25}{-\frac{3}{4}}t=-\frac{728}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
t^{2}-\frac{100}{3}t=-\frac{728}{-\frac{3}{4}}
Divide 25 by -\frac{3}{4} by multiplying 25 by the reciprocal of -\frac{3}{4}.
t^{2}-\frac{100}{3}t=\frac{2912}{3}
Divide -728 by -\frac{3}{4} by multiplying -728 by the reciprocal of -\frac{3}{4}.
t^{2}-\frac{100}{3}t+\left(-\frac{50}{3}\right)^{2}=\frac{2912}{3}+\left(-\frac{50}{3}\right)^{2}
Divide -\frac{100}{3}, the coefficient of the x term, by 2 to get -\frac{50}{3}. Then add the square of -\frac{50}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{100}{3}t+\frac{2500}{9}=\frac{2912}{3}+\frac{2500}{9}
Square -\frac{50}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{100}{3}t+\frac{2500}{9}=\frac{11236}{9}
Add \frac{2912}{3} to \frac{2500}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{50}{3}\right)^{2}=\frac{11236}{9}
Factor t^{2}-\frac{100}{3}t+\frac{2500}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{50}{3}\right)^{2}}=\sqrt{\frac{11236}{9}}
Take the square root of both sides of the equation.
t-\frac{50}{3}=\frac{106}{3} t-\frac{50}{3}=-\frac{106}{3}
Simplify.
t=52 t=-\frac{56}{3}
Add \frac{50}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}