Solve for t
t = \frac{\sqrt{37} + 11}{3} \approx 5.694254177
t = \frac{11 - \sqrt{37}}{3} \approx 1.639079157
Share
Copied to clipboard
0=3t^{2}-22t+28
Multiply both sides of the equation by 2.
3t^{2}-22t+28=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\times 28}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -22 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-22\right)±\sqrt{484-4\times 3\times 28}}{2\times 3}
Square -22.
t=\frac{-\left(-22\right)±\sqrt{484-12\times 28}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-22\right)±\sqrt{484-336}}{2\times 3}
Multiply -12 times 28.
t=\frac{-\left(-22\right)±\sqrt{148}}{2\times 3}
Add 484 to -336.
t=\frac{-\left(-22\right)±2\sqrt{37}}{2\times 3}
Take the square root of 148.
t=\frac{22±2\sqrt{37}}{2\times 3}
The opposite of -22 is 22.
t=\frac{22±2\sqrt{37}}{6}
Multiply 2 times 3.
t=\frac{2\sqrt{37}+22}{6}
Now solve the equation t=\frac{22±2\sqrt{37}}{6} when ± is plus. Add 22 to 2\sqrt{37}.
t=\frac{\sqrt{37}+11}{3}
Divide 22+2\sqrt{37} by 6.
t=\frac{22-2\sqrt{37}}{6}
Now solve the equation t=\frac{22±2\sqrt{37}}{6} when ± is minus. Subtract 2\sqrt{37} from 22.
t=\frac{11-\sqrt{37}}{3}
Divide 22-2\sqrt{37} by 6.
t=\frac{\sqrt{37}+11}{3} t=\frac{11-\sqrt{37}}{3}
The equation is now solved.
0=3t^{2}-22t+28
Multiply both sides of the equation by 2.
3t^{2}-22t+28=0
Swap sides so that all variable terms are on the left hand side.
3t^{2}-22t=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
\frac{3t^{2}-22t}{3}=-\frac{28}{3}
Divide both sides by 3.
t^{2}-\frac{22}{3}t=-\frac{28}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{22}{3}t+\left(-\frac{11}{3}\right)^{2}=-\frac{28}{3}+\left(-\frac{11}{3}\right)^{2}
Divide -\frac{22}{3}, the coefficient of the x term, by 2 to get -\frac{11}{3}. Then add the square of -\frac{11}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{22}{3}t+\frac{121}{9}=-\frac{28}{3}+\frac{121}{9}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{22}{3}t+\frac{121}{9}=\frac{37}{9}
Add -\frac{28}{3} to \frac{121}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{11}{3}\right)^{2}=\frac{37}{9}
Factor t^{2}-\frac{22}{3}t+\frac{121}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{3}\right)^{2}}=\sqrt{\frac{37}{9}}
Take the square root of both sides of the equation.
t-\frac{11}{3}=\frac{\sqrt{37}}{3} t-\frac{11}{3}=-\frac{\sqrt{37}}{3}
Simplify.
t=\frac{\sqrt{37}+11}{3} t=\frac{11-\sqrt{37}}{3}
Add \frac{11}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}