Solve for x
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
x = \frac{40}{3} = 13\frac{1}{3} \approx 13.333333333
Graph
Share
Copied to clipboard
\frac{3}{256}x^{2}-\frac{3}{16}x+\frac{5}{12}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-\frac{3}{16}\right)±\sqrt{\left(-\frac{3}{16}\right)^{2}-4\times \frac{3}{256}\times \frac{5}{12}}}{2\times \frac{3}{256}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{256} for a, -\frac{3}{16} for b, and \frac{5}{12} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{16}\right)±\sqrt{\frac{9}{256}-4\times \frac{3}{256}\times \frac{5}{12}}}{2\times \frac{3}{256}}
Square -\frac{3}{16} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{16}\right)±\sqrt{\frac{9}{256}-\frac{3}{64}\times \frac{5}{12}}}{2\times \frac{3}{256}}
Multiply -4 times \frac{3}{256}.
x=\frac{-\left(-\frac{3}{16}\right)±\sqrt{\frac{9-5}{256}}}{2\times \frac{3}{256}}
Multiply -\frac{3}{64} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3}{16}\right)±\sqrt{\frac{1}{64}}}{2\times \frac{3}{256}}
Add \frac{9}{256} to -\frac{5}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3}{16}\right)±\frac{1}{8}}{2\times \frac{3}{256}}
Take the square root of \frac{1}{64}.
x=\frac{\frac{3}{16}±\frac{1}{8}}{2\times \frac{3}{256}}
The opposite of -\frac{3}{16} is \frac{3}{16}.
x=\frac{\frac{3}{16}±\frac{1}{8}}{\frac{3}{128}}
Multiply 2 times \frac{3}{256}.
x=\frac{\frac{5}{16}}{\frac{3}{128}}
Now solve the equation x=\frac{\frac{3}{16}±\frac{1}{8}}{\frac{3}{128}} when ± is plus. Add \frac{3}{16} to \frac{1}{8} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{40}{3}
Divide \frac{5}{16} by \frac{3}{128} by multiplying \frac{5}{16} by the reciprocal of \frac{3}{128}.
x=\frac{\frac{1}{16}}{\frac{3}{128}}
Now solve the equation x=\frac{\frac{3}{16}±\frac{1}{8}}{\frac{3}{128}} when ± is minus. Subtract \frac{1}{8} from \frac{3}{16} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{8}{3}
Divide \frac{1}{16} by \frac{3}{128} by multiplying \frac{1}{16} by the reciprocal of \frac{3}{128}.
x=\frac{40}{3} x=\frac{8}{3}
The equation is now solved.
\frac{3}{256}x^{2}-\frac{3}{16}x+\frac{5}{12}=0
Swap sides so that all variable terms are on the left hand side.
\frac{3}{256}x^{2}-\frac{3}{16}x=-\frac{5}{12}
Subtract \frac{5}{12} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{3}{256}x^{2}-\frac{3}{16}x}{\frac{3}{256}}=-\frac{\frac{5}{12}}{\frac{3}{256}}
Divide both sides of the equation by \frac{3}{256}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{3}{16}}{\frac{3}{256}}\right)x=-\frac{\frac{5}{12}}{\frac{3}{256}}
Dividing by \frac{3}{256} undoes the multiplication by \frac{3}{256}.
x^{2}-16x=-\frac{\frac{5}{12}}{\frac{3}{256}}
Divide -\frac{3}{16} by \frac{3}{256} by multiplying -\frac{3}{16} by the reciprocal of \frac{3}{256}.
x^{2}-16x=-\frac{320}{9}
Divide -\frac{5}{12} by \frac{3}{256} by multiplying -\frac{5}{12} by the reciprocal of \frac{3}{256}.
x^{2}-16x+\left(-8\right)^{2}=-\frac{320}{9}+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-\frac{320}{9}+64
Square -8.
x^{2}-16x+64=\frac{256}{9}
Add -\frac{320}{9} to 64.
\left(x-8\right)^{2}=\frac{256}{9}
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{\frac{256}{9}}
Take the square root of both sides of the equation.
x-8=\frac{16}{3} x-8=-\frac{16}{3}
Simplify.
x=\frac{40}{3} x=\frac{8}{3}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}