Solve for H
H=-515.916
Share
Copied to clipboard
0=\frac{2\times 125}{3}H+10\left(12.5H+26\times 417-93.75\right)
Express \frac{2}{3}\times 125 as a single fraction.
0=\frac{250}{3}H+10\left(12.5H+26\times 417-93.75\right)
Multiply 2 and 125 to get 250.
0=\frac{250}{3}H+10\left(12.5H+10842-93.75\right)
Multiply 26 and 417 to get 10842.
0=\frac{250}{3}H+10\left(12.5H+10748.25\right)
Subtract 93.75 from 10842 to get 10748.25.
0=\frac{250}{3}H+125H+107482.5
Use the distributive property to multiply 10 by 12.5H+10748.25.
0=\frac{625}{3}H+107482.5
Combine \frac{250}{3}H and 125H to get \frac{625}{3}H.
\frac{625}{3}H+107482.5=0
Swap sides so that all variable terms are on the left hand side.
\frac{625}{3}H=-107482.5
Subtract 107482.5 from both sides. Anything subtracted from zero gives its negation.
H=-107482.5\times \frac{3}{625}
Multiply both sides by \frac{3}{625}, the reciprocal of \frac{625}{3}.
H=-\frac{214965}{2}\times \frac{3}{625}
Convert decimal number -107482.5 to fraction -\frac{1074825}{10}. Reduce the fraction -\frac{1074825}{10} to lowest terms by extracting and canceling out 5.
H=\frac{-214965\times 3}{2\times 625}
Multiply -\frac{214965}{2} times \frac{3}{625} by multiplying numerator times numerator and denominator times denominator.
H=\frac{-644895}{1250}
Do the multiplications in the fraction \frac{-214965\times 3}{2\times 625}.
H=-\frac{128979}{250}
Reduce the fraction \frac{-644895}{1250} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}