Evaluate
15.12
Factor
\frac{2 \cdot 7 \cdot 3 ^ {3}}{5 ^ {2}} = 15\frac{3}{25} = 15.12
Share
Copied to clipboard
0.9\times \frac{1}{\frac{7}{168}+\frac{3}{168}}
Least common multiple of 24 and 56 is 168. Convert \frac{1}{24} and \frac{1}{56} to fractions with denominator 168.
0.9\times \frac{1}{\frac{7+3}{168}}
Since \frac{7}{168} and \frac{3}{168} have the same denominator, add them by adding their numerators.
0.9\times \frac{1}{\frac{10}{168}}
Add 7 and 3 to get 10.
0.9\times \frac{1}{\frac{5}{84}}
Reduce the fraction \frac{10}{168} to lowest terms by extracting and canceling out 2.
0.9\times 1\times \frac{84}{5}
Divide 1 by \frac{5}{84} by multiplying 1 by the reciprocal of \frac{5}{84}.
0.9\times \frac{84}{5}
Multiply 1 and \frac{84}{5} to get \frac{84}{5}.
\frac{9}{10}\times \frac{84}{5}
Convert decimal number 0.9 to fraction \frac{9}{10}.
\frac{9\times 84}{10\times 5}
Multiply \frac{9}{10} times \frac{84}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{756}{50}
Do the multiplications in the fraction \frac{9\times 84}{10\times 5}.
\frac{378}{25}
Reduce the fraction \frac{756}{50} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}