Solve for x
x=0.64625
Graph
Share
Copied to clipboard
0.094+0.25\left(\frac{18.5}{25}+0.6\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Multiply 0.1 and 0.94 to get 0.094.
0.094+0.25\left(\frac{185}{250}+0.6\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Expand \frac{18.5}{25} by multiplying both numerator and the denominator by 10.
0.094+0.25\left(\frac{37}{50}+0.6\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Reduce the fraction \frac{185}{250} to lowest terms by extracting and canceling out 5.
0.094+0.25\left(\frac{37}{50}+\frac{3}{5}\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
0.094+0.25\left(\frac{37}{50}+\frac{30}{50}\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Least common multiple of 50 and 5 is 50. Convert \frac{37}{50} and \frac{3}{5} to fractions with denominator 50.
0.094+0.25\times \frac{37+30}{50}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Since \frac{37}{50} and \frac{30}{50} have the same denominator, add them by adding their numerators.
0.094+0.25\times \frac{67}{50}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Add 37 and 30 to get 67.
0.094+\frac{1}{4}\times \frac{67}{50}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
0.094+\frac{1\times 67}{4\times 50}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Multiply \frac{1}{4} times \frac{67}{50} by multiplying numerator times numerator and denominator times denominator.
0.094+\frac{67}{200}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Do the multiplications in the fraction \frac{1\times 67}{4\times 50}.
\frac{47}{500}+\frac{67}{200}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Convert decimal number 0.094 to fraction \frac{94}{1000}. Reduce the fraction \frac{94}{1000} to lowest terms by extracting and canceling out 2.
\frac{94}{1000}+\frac{335}{1000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Least common multiple of 500 and 200 is 1000. Convert \frac{47}{500} and \frac{67}{200} to fractions with denominator 1000.
\frac{94+335}{1000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Since \frac{94}{1000} and \frac{335}{1000} have the same denominator, add them by adding their numerators.
\frac{429}{1000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.8
Add 94 and 335 to get 429.
\frac{429}{1000}+0.25\left(\frac{3}{8}+0.075\right)+0.4x=0.8
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
\frac{429}{1000}+0.25\left(\frac{3}{8}+\frac{3}{40}\right)+0.4x=0.8
Convert decimal number 0.075 to fraction \frac{75}{1000}. Reduce the fraction \frac{75}{1000} to lowest terms by extracting and canceling out 25.
\frac{429}{1000}+0.25\left(\frac{15}{40}+\frac{3}{40}\right)+0.4x=0.8
Least common multiple of 8 and 40 is 40. Convert \frac{3}{8} and \frac{3}{40} to fractions with denominator 40.
\frac{429}{1000}+0.25\times \frac{15+3}{40}+0.4x=0.8
Since \frac{15}{40} and \frac{3}{40} have the same denominator, add them by adding their numerators.
\frac{429}{1000}+0.25\times \frac{18}{40}+0.4x=0.8
Add 15 and 3 to get 18.
\frac{429}{1000}+0.25\times \frac{9}{20}+0.4x=0.8
Reduce the fraction \frac{18}{40} to lowest terms by extracting and canceling out 2.
\frac{429}{1000}+\frac{1}{4}\times \frac{9}{20}+0.4x=0.8
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{429}{1000}+\frac{1\times 9}{4\times 20}+0.4x=0.8
Multiply \frac{1}{4} times \frac{9}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{429}{1000}+\frac{9}{80}+0.4x=0.8
Do the multiplications in the fraction \frac{1\times 9}{4\times 20}.
\frac{858}{2000}+\frac{225}{2000}+0.4x=0.8
Least common multiple of 1000 and 80 is 2000. Convert \frac{429}{1000} and \frac{9}{80} to fractions with denominator 2000.
\frac{858+225}{2000}+0.4x=0.8
Since \frac{858}{2000} and \frac{225}{2000} have the same denominator, add them by adding their numerators.
\frac{1083}{2000}+0.4x=0.8
Add 858 and 225 to get 1083.
0.4x=0.8-\frac{1083}{2000}
Subtract \frac{1083}{2000} from both sides.
0.4x=\frac{4}{5}-\frac{1083}{2000}
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
0.4x=\frac{1600}{2000}-\frac{1083}{2000}
Least common multiple of 5 and 2000 is 2000. Convert \frac{4}{5} and \frac{1083}{2000} to fractions with denominator 2000.
0.4x=\frac{1600-1083}{2000}
Since \frac{1600}{2000} and \frac{1083}{2000} have the same denominator, subtract them by subtracting their numerators.
0.4x=\frac{517}{2000}
Subtract 1083 from 1600 to get 517.
x=\frac{\frac{517}{2000}}{0.4}
Divide both sides by 0.4.
x=\frac{517}{2000\times 0.4}
Express \frac{\frac{517}{2000}}{0.4} as a single fraction.
x=\frac{517}{800}
Multiply 2000 and 0.4 to get 800.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}