Solve for x
x=0.715
Graph
Share
Copied to clipboard
0.094+0.25\left(\frac{18.5}{25}+0.09\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Multiply 0.1 and 0.94 to get 0.094.
0.094+0.25\left(\frac{185}{250}+0.09\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Expand \frac{18.5}{25} by multiplying both numerator and the denominator by 10.
0.094+0.25\left(\frac{37}{50}+0.09\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Reduce the fraction \frac{185}{250} to lowest terms by extracting and canceling out 5.
0.094+0.25\left(\frac{37}{50}+\frac{9}{100}\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Convert decimal number 0.09 to fraction \frac{9}{100}.
0.094+0.25\left(\frac{74}{100}+\frac{9}{100}\right)+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Least common multiple of 50 and 100 is 100. Convert \frac{37}{50} and \frac{9}{100} to fractions with denominator 100.
0.094+0.25\times \frac{74+9}{100}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Since \frac{74}{100} and \frac{9}{100} have the same denominator, add them by adding their numerators.
0.094+0.25\times \frac{83}{100}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Add 74 and 9 to get 83.
0.094+\frac{1}{4}\times \frac{83}{100}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
0.094+\frac{1\times 83}{4\times 100}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Multiply \frac{1}{4} times \frac{83}{100} by multiplying numerator times numerator and denominator times denominator.
0.094+\frac{83}{400}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Do the multiplications in the fraction \frac{1\times 83}{4\times 100}.
\frac{47}{500}+\frac{83}{400}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Convert decimal number 0.094 to fraction \frac{94}{1000}. Reduce the fraction \frac{94}{1000} to lowest terms by extracting and canceling out 2.
\frac{188}{2000}+\frac{415}{2000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Least common multiple of 500 and 400 is 2000. Convert \frac{47}{500} and \frac{83}{400} to fractions with denominator 2000.
\frac{188+415}{2000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Since \frac{188}{2000} and \frac{415}{2000} have the same denominator, add them by adding their numerators.
\frac{603}{2000}+0.25\left(\frac{6}{16}+0.075\right)+0.4x=0.7
Add 188 and 415 to get 603.
\frac{603}{2000}+0.25\left(\frac{3}{8}+0.075\right)+0.4x=0.7
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
\frac{603}{2000}+0.25\left(\frac{3}{8}+\frac{3}{40}\right)+0.4x=0.7
Convert decimal number 0.075 to fraction \frac{75}{1000}. Reduce the fraction \frac{75}{1000} to lowest terms by extracting and canceling out 25.
\frac{603}{2000}+0.25\left(\frac{15}{40}+\frac{3}{40}\right)+0.4x=0.7
Least common multiple of 8 and 40 is 40. Convert \frac{3}{8} and \frac{3}{40} to fractions with denominator 40.
\frac{603}{2000}+0.25\times \frac{15+3}{40}+0.4x=0.7
Since \frac{15}{40} and \frac{3}{40} have the same denominator, add them by adding their numerators.
\frac{603}{2000}+0.25\times \frac{18}{40}+0.4x=0.7
Add 15 and 3 to get 18.
\frac{603}{2000}+0.25\times \frac{9}{20}+0.4x=0.7
Reduce the fraction \frac{18}{40} to lowest terms by extracting and canceling out 2.
\frac{603}{2000}+\frac{1}{4}\times \frac{9}{20}+0.4x=0.7
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{603}{2000}+\frac{1\times 9}{4\times 20}+0.4x=0.7
Multiply \frac{1}{4} times \frac{9}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{603}{2000}+\frac{9}{80}+0.4x=0.7
Do the multiplications in the fraction \frac{1\times 9}{4\times 20}.
\frac{603}{2000}+\frac{225}{2000}+0.4x=0.7
Least common multiple of 2000 and 80 is 2000. Convert \frac{603}{2000} and \frac{9}{80} to fractions with denominator 2000.
\frac{603+225}{2000}+0.4x=0.7
Since \frac{603}{2000} and \frac{225}{2000} have the same denominator, add them by adding their numerators.
\frac{828}{2000}+0.4x=0.7
Add 603 and 225 to get 828.
\frac{207}{500}+0.4x=0.7
Reduce the fraction \frac{828}{2000} to lowest terms by extracting and canceling out 4.
0.4x=0.7-\frac{207}{500}
Subtract \frac{207}{500} from both sides.
0.4x=\frac{7}{10}-\frac{207}{500}
Convert decimal number 0.7 to fraction \frac{7}{10}.
0.4x=\frac{350}{500}-\frac{207}{500}
Least common multiple of 10 and 500 is 500. Convert \frac{7}{10} and \frac{207}{500} to fractions with denominator 500.
0.4x=\frac{350-207}{500}
Since \frac{350}{500} and \frac{207}{500} have the same denominator, subtract them by subtracting their numerators.
0.4x=\frac{143}{500}
Subtract 207 from 350 to get 143.
x=\frac{\frac{143}{500}}{0.4}
Divide both sides by 0.4.
x=\frac{143}{500\times 0.4}
Express \frac{\frac{143}{500}}{0.4} as a single fraction.
x=\frac{143}{200}
Multiply 500 and 0.4 to get 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}